Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T19:20:38.387Z Has data issue: false hasContentIssue false

Networks, Extinction and Paleocommunity Food Webs

Published online by Cambridge University Press:  21 July 2017

Peter D. Roopnarine*
Affiliation:
Dept. of Invertebrate Zoology & Geology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco CA 94118, USA
Get access

Abstract

Food webs represent trophic interactions among species in communities. Those interactions both structure and are structured by species richness, ecological diversity, and evolutionary processes. Geological and macroevolutionary timescales are therefore important to the understanding of food web dynamics, and there is a need for the consideration of paleocommunity food webs. The fossil record presents challenges in this regard, but the problem can be approached with combinatoric analysis and network theory. This paper is an introduction to the aspects of those disciplines relevant to the study of paleo-food webs, and explores a probabilistic and numerical approach.

Type
Ecological Data
Copyright
Copyright © 2010 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, R., Jeong, H. and Barabasi, A. 2000. Error and attack tolerance of complex networks. Nature, 406:378382.CrossRefGoogle ScholarPubMed
Allesina, S. and Bodini, A. 2004. Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions. Journal of Theoretical Biology, 230: 351358.CrossRefGoogle ScholarPubMed
Allesina, S., Bodini, A. and Bondavalli, C. 2005. Ecological subsystems via graph theory: the role of strongly connected components. Oikos, 110:164176.CrossRefGoogle Scholar
Allmon, W. D. 2001. Nutrients, temperature, disturbance, and evolution: a model for the late Cenozoic marine record of the western Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 166:926.CrossRefGoogle Scholar
Angielczyk, K. D., Roopnarine, P. D. and Wang, S. C. 2005. Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo Basin, South Africa, p. 1623. In Lucas, S. G. and Zeigler, K. E. (eds.), The Nonmarine Permian. New Mexico Museum of Natural History and Science Bulletin.Google Scholar
Angielczyk, K. D., Kammerer, C. F., Roopnarine, P. D. and Wang, S. C. 2008. The perturbation resistance of Early Permian terrestrial communities characterized by low tetrapod herbivore diversity. Geological Society of America Abstracts with Programs, 40(6).Google Scholar
Bambach, R. K. 1993. Seafood through time; changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology, 19:372397.CrossRefGoogle Scholar
Barabási, A., Albert, R. and Jeong, H. 2000. Scale-free characteristics of random networks: the topology of the world wide web. Physica A, 281:6977.CrossRefGoogle Scholar
Barabási, A., Jeong, H., Neda, Z., Ravasz, E., Schubert, A. and Vicsek, T. 2002. Evolution of the social network of scientific collaborations. Physica A, 311:560614.CrossRefGoogle Scholar
Camacho, J., Guimerá, R. and Nunes Amaral, L. A. 2002. Robust patterns in food web structure. Physical Review Letters, 188:14.Google Scholar
Cohen, J. E. and Briand, F. 1984. Trophic links of community food webs. Proceedings of the National Academy of Sciences, 81:41054109.CrossRefGoogle ScholarPubMed
Dunne, J. A., Williams, R. J. and Martinez, N. D. 2002a. Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences, 99:1291712922.CrossRefGoogle ScholarPubMed
Dunne, J. A., Williams, R. J. and Martinez, N. D. 2002b. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters, 5:558567.CrossRefGoogle Scholar
Dunne, J. A., Williams, R. J. and Martinez, N. D. 2004. Network structure and robustness of marine food webs. Marine Ecology Progress Series, 273:291302.CrossRefGoogle Scholar
Dunne, J. A., Williams, R. J., Martinez, N. D., Wood, R. A. and Erwin, D. H. 2008. Compilation and network analyses of Cambrian food webs. PLOS Biology, 6:06930708.CrossRefGoogle ScholarPubMed
Dunne, J. A., and Williams, R. J. 2009. Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society, B, 364:17111723.CrossRefGoogle ScholarPubMed
Eveleigh, E. S., McCann, K. S., McCarthy, P. C., Pollock, S. J., Lucarotti, C. J., Morin, B., McDougall, G. A., Strongman, D. B., Huber, J. T., Umbanthowar, J. and Faria, L. D. B. 2007. Fluctuations in density of an outbreak species drive diversity cascades in food webs. Proceedings of the National Academy of Sciences, 104:1697616981.CrossRefGoogle ScholarPubMed
Ing, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., Edwards, F., Figueroa, D., Jacob, U., Jones, J. I., Lauridsen, R. B., Ledger, M. E., Lewi, H. M., Olesen, J. M., Van Veen, F. J. F., Warren, P. H., and Woodward, G. 2009. Ecological networks – beyond food webs. Journal of Animal Ecology, 78:253269.CrossRefGoogle Scholar
Jiang, S., Bralower, T. J., Patzkowsky, M. E., Kump, L. R. and Schueth, J. D. 2010. Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nature Geoscience, DOI: 10.1038/ngeo775.CrossRefGoogle Scholar
Lascala-Gruenewald, D., Roopnarine, P. D. and Hertog, R. 2009. Modeling and assessing the behavior of fossil food webs. Geological Society of America Abstracts with Programs, 41:265.Google Scholar
Martin, R. E. 1996. Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass, diversity, and extinction of the marine biosphere. Paleontological Journal, 30:637643.Google Scholar
Martinez, N. D. 1992. Constant connectance in community food webs. The American Naturalist, 139:12081218.CrossRefGoogle Scholar
May, R. M. 1973. Stability and complexity in model ecosystems. Princeton University Press, New Jersey. 235 p.Google ScholarPubMed
Montoya, J. M. and Sole, R. V. 2002. Small world patterns in food webs. Journal of Theoretical Biology, 214:405412.CrossRefGoogle ScholarPubMed
Polya, G. 1954. Plausible Reasoning. Volume 1. Princeton University Press, New Jersey. 280 p.Google Scholar
Roopnarine, P. D. 2006. Extinction cascades and catastrophe in ancient food webs. Paleobiology, 32:119.CrossRefGoogle Scholar
Roopnarine, P. D. 2009. Ecological modeling of paleocommunity food webs. in Dietl, G. and Flessa, K., eds., Conservation Paleobiology, The Paleontological Society Papers, 15:195220.Google Scholar
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. and Hertog, R. 2007. Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society B, 274:20772086.CrossRefGoogle ScholarPubMed
Roopnarine, P. and Hertog, R. 2010. Exploitation, secondary extinction and the altered trophic structure of Jamaican coral reefs. Available from Nature Precedings http://hdl.handle.net/10101/npre.2010.4186.1.Google Scholar
Sepkoski, J. J. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363:1560.Google Scholar
Solé, R. V., Montoya, J. M. and Erwin, D. H. 2002. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Philosophical Transactions of the Royal Society of London Series B, 357:697707.CrossRefGoogle ScholarPubMed
Strogatz, S. H. 2001. Exploring complex networks. Nature, 410:268276.CrossRefGoogle ScholarPubMed
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory, 1:130.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation. Princeton University Press, New Jersey. 527 p.CrossRefGoogle Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and the Phanerozoic revolutions. Paleobiology, 21:125152.CrossRefGoogle Scholar
Williams, R. J. and Martinez, N. D. 2000. Simplex rules yield complex food webs. Nature, 404:180183.CrossRefGoogle Scholar
Winemiller, K. O. 1989. Must connectance decrease with species richness? American Naturalist, 134:960968.CrossRefGoogle Scholar