Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T05:53:43.108Z Has data issue: false hasContentIssue false

Patterns and Processes of Ancient Reef Crises

Published online by Cambridge University Press:  21 July 2017

Wolfgang Kiessling*
Affiliation:
Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humbolds University Berlin, 10115 Berlin, Germany
Get access

Abstract

Reef crises need to be separated from mass extinctions because they are manifested in reductions of reefal carbonate production rather than elevated extinction rates. The volume of preserved fossil reefs per unit time is perhaps the best accessible metric to assess reefal carbonate production rates in the geologic record. Although this metric is prone to biases introduced by weathering, burial, and sampling, it offers the possibility to analyze general connections between reef crises and mass extinctions. The biases can be partially corrected by looking at short-term variations and by utilizing independent proxies of sampling. Using a comprehensive database of ancient reefs and considering the generally high volatility in reefal carbonate production, we can identify five significant metazoan reef crises in the post-Cambrian Phanerozoic, only three of which correspond to traditional mass extinctions. Ancient reefs crises appear to be due to episodes of rapid CO2 release and warming, rather than cooling or meteorite impacts.

Type
Research Article
Copyright
Copyright © 2011 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M., and Baumiller, T. K. 2003. Selective extinction among Early Jurassic bivalves: A consequence of anoxia. Geology, 31:10771080.CrossRefGoogle Scholar
Aberhan, M., Weidemeyer, S., Kiessling, W., Scasso, R., and Medina, F. A. 2007. Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous/Paleogene boundary sections. Geology, 35:227230.CrossRefGoogle Scholar
Adachi, N., Ezaki, Y., and Liu, J. 2011. Early Ordovician shift in reef construction from microbial to metazoan reefs. Palaios, 26:106114.CrossRefGoogle Scholar
Alegret, L., Ortiz, S., and Molina, E. 2009. Extinction and recovery of benthic foraminifera across the Paleocene-Eocene Thermal Maximum at the Alamedilla section (Southern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 279:186200.Google Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences (USA), 105:1153611542.Google Scholar
Alroy, J. 2010. Geographic, environmental, and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology, 53:12111235.CrossRefGoogle Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Ferguson, C. A., Hanson, V. L., Jamet, C. M., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Peters, S. E., Sessa, J. A., Simpson, C., Tomasovych, A., and Visaggi, C. C. 2008. Phanerozoic trends in the diversity of marine invertebrates. Science, 321:97100.CrossRefGoogle ScholarPubMed
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences, 34:127155.CrossRefGoogle Scholar
Bambach, R. K., Knoll, A. H., and Sepkoskl, J. J. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences (USA), 99:68546859.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30:522542.Google Scholar
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B., and Ferrer, E. A. 2011. Has the Earth/'s sixth mass extinction already arrived? Nature, 471:5157.Google Scholar
Baron-Szabo, R. 2008. Corals of the K/T-boundary: Scleractinian corals of the suborders Dendrophylliina, Caryophylliina, Fungiina, Microsolenina, and Stylinina. Zootaxa, 1952:1244.Google Scholar
Beerling, D. J., and Brentnall, S. J. 2007. Numerical evaluation of mechanisms driving Early Jurassic changes in global carbon cycling. Geology, 35:247250.CrossRefGoogle Scholar
Bellwood, D. R., Hughes, T. P., Folke, C., and Nystrom, M. 2004. Confronting the coral reef crisis. Nature, 429:827833.CrossRefGoogle ScholarPubMed
Brezinski, D. K., Cecil, C. B., Skema, V. W., and Stamm, R. 2008. Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period. Palaeogeography, Palaeoclimatology, Palaeoecology, 268:143151.CrossRefGoogle Scholar
Carpenter, K. E., Abrar, M., Aeby, G., Aronson, R. B., Banks, S., Bruckner, A., Chiriboga, A., Cortes, J., Delbeek, J. C., DeVantier, L., Edgar, G. J., Edwards, A. J., Fenner, D., Guzman, H. M., Hoeksema, B. W., Hodgson, G., Johan, O., Licuanan, W. Y., Livingstone, S. R., Lovell, E. R., Moore, J. A., Obura, D. O., Ochavillo, D., Polidoro, B. A., Precht, W. F., Quibilan, M. C., Reboton, C., Richards, Z. T., Rogers, A. D., Sanciangco, J., Sheppard, A., Sheppard, C., Smith, J., Stuart, S., Turak, E., Veron, J. E. N., Wallace, C., Weil, E., and Wood, E. 2008. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science, 321:560563.CrossRefGoogle ScholarPubMed
Cecca, F., Martin Garin, B., Marchand, D., Lathuiliere, B., and Bartolini, A. 2005. Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic). Palaeogeography, Palaeoclimatology, Palaeoecology, 222:1032.Google Scholar
Cohen, A. S., and Coe, A. L. 2007. The impact of the Central Atlantic Magmatic Province on climate and on the Sr-and Os-isotope evolution of seawater. Palaeogeography Palaeoclimatology Palaeoecology, 244:374390.CrossRefGoogle Scholar
Cooper, T. F., De'Ath, G., Fabricius, K. E., and Lough, J. M. 2008. Declining coral calcification in massive Pontes in two nearshore regions of the northern Great Barrier Reef. Global Change Biology, 14:529538.CrossRefGoogle Scholar
Copper, P. 2002. Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 181:2765.Google Scholar
De'ath, G., Lough, J. M., and Fabricius, K. E. 2009. Declining coral calcification on the Great Barrier Reef. Science, 323:116119.Google Scholar
de Freitas, T. A., and Mayr, U. 1995. Kilometre-scale microbial buildups in a rimmed carbonate platform succession, Arctic Canada: new insight on Lower Ordovician reef facies. Bulletin of Canadian Petroleum Geology, 43:407432.Google Scholar
Dullo, W.-C. 2005. Coral growth and reef growth: a brief review. Facies, 51:3348.Google Scholar
Flügel, E., and Kiessling, W. 2002a. A new look at ancient reefs, p. 310 In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72, Tulsa.Google Scholar
Flügel, E., and Kiessling, W. 2002b. Patterns of Phanerozoic reef crises, p. 691733 In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72, Tulsa.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology, 31:620.2.0.CO;2>CrossRefGoogle Scholar
Gharaie, M. H. M., Matsumoto, R., Racki, G., and Kakuwa, Y. 2007. Chemostratigraphy of Frasnian-Famennian transition: Possibility of methane hydrate dissociation leading to mass extinction. Geological Society of America Special Papers, 424:109125.Google Scholar
Gili, E., Skelton, P. W., Vicens, E., and Obrador, A. 1995. Corals to rudists - an environmentally induced assemblage succession. Palaeogeography, Palaeoclimatology, Palaeoecology, 119:127136.CrossRefGoogle Scholar
Grotzinger, J. P., Waiters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.Google Scholar
Harries, P. J., and Little, C. T. S. 1999. The early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology, 154:39.Google Scholar
Hoegh-Guldberg, O. 1999. Climate change, coral bleaching and the future of the world's coral reefs. Marine and Freshwater Research, 50:839866.Google Scholar
Hubbard, D. K., Miller, A. I., and Scaturo, D. 1990. Production and cycling of calcium carbonate in a shelf-edge reef system (U.S. Virgin Islands): Applications to the nature of reef systems in the fossil record. Journal of Sedimentary Petrology, 60:335360.Google Scholar
Jackson, J. B. C. 2008. Ecological extinction and evolution in the brave new ocean. Proceedings of the National Academy of Sciences (USA), 105:1145811465.Google Scholar
Joachimski, M. M., and Buggisch, W. 1993. Anoxic events in the late Frasnian - causes of the Frasnian-Famennian faunal crisis? Geology, 21:675678.2.3.CO;2>CrossRefGoogle Scholar
Johnson, K. G., Jackson, J. B. C., and Budd, A. F. 2008. Caribbean reef development was independent of coral diversity over 28 Million years. Science, 319:15211523.Google Scholar
Kiessling, W. 2001. Phanerozoic reef trends based on the Paleoreefs database, p. 4188 In Stanley, G. D. (ed.), The History and Sedimentology of Ancient Reef Systems. Plenum Press, New York.Google Scholar
Kiessling, W. 2005a. Habitat effects and sampling bias on Phanerozoic reef distribution. Facies, 51:2735.Google Scholar
Kiessling, W. 2005b. Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature, 433:410413.Google Scholar
Kiessling, W. 2006. Towards an unbiased estimate of fluctuations in reef abundance and volume during the Phanerozoic. Biogeosciences, 3:1527.Google Scholar
Kiessling, W. 2008. Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Record, 11:718.Google Scholar
Kiessling, W. 2009. Geologic and biologic controls on the evolution of reefs. Annual Review of Ecology, Evolution, and Systematics, 40:173192.Google Scholar
Kiessling, W., and Baron-Szabo, R. 2004. Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 214:195223.CrossRefGoogle Scholar
Kiessling, W., and Flügel, E. 2002. Paleoreefs - a database on Phanerozoic reefs, p. 7792 In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72, Tulsa.Google Scholar
Kiessling, W., Flügel, E., and Golonka, J. 1999. Paleoreef maps: Evaluation of a comprehensive database on Phanerozoic reefs. AAPG Bulletin, 83:15521587.Google Scholar
Kiessling, W., Flügel, E., and Golonka, J. 2000. Fluctuations in the carbonate production of Phanerozoic reefs, p. 191215 In Insalaco, E., Skelton, P. W., and Palmer, T. J. (eds.), Carbonate Platform Systems: components and interactions. Geological Society Special Publication 178, London.Google Scholar
Kiessling, W., Flügel, E., and Golonka, J. 2002. From patterns to processes: the future of reef research, p. 735743 In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72, Tulsa.Google Scholar
Kiessling, W., and Simpson, C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 17:5667.Google Scholar
Kleypas, J. A. 1997. Modeled estimates of global reef habitat and carbonate production since the last glacial maximum. Paleoceanography, 12:533545.Google Scholar
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative earth history and Late Permian mass extinction. Science, 273:452457.Google Scholar
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256:295313.Google Scholar
Marzoli, A., Bertrand, H., Knight, K. B., Cirilli, S., Buratti, N., Vérati, C., Nomade, S., Renne, P. R., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L., and Bellieni, G. 2004. Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology, 32:973976.CrossRefGoogle Scholar
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., and Mini, A. D. 1999. Extensive 200-million-year-old continental flood basalts of the Central Atlantic Magmatic Province. Science, 284:616618.Google Scholar
McGowan, A. J., and Smith, A. B. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology, 34:80103.Google Scholar
Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., McArdle, D., McClenachan, L., Newman, M. J. H., Paredes, G., Warner, R. R., and Jackson, J. B. C. 2003. Global trajectories of the long-term decline of coral reef ecosystems. Science, 301:955958.Google Scholar
Payne, J. L., and Kump, L. R. 2007. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth and Planetary Science Letters, 256:264277.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences (USA), 102:1232612331.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology, 27:583.Google Scholar
Plaziat, J.-C., and Perrin, C. 1992. Multikilometer-sized reefs built by foraminifera (Solenomeris) from the early Eocene of the Pyrenean domain (S. France, N. Spain): Palaeoecologic relations with coral reefs. Palaeogeography, Palaeoclimatology, Palaeoecology, 96:195231.CrossRefGoogle Scholar
Quinn, J. F. 1983. Mass extinctions in the fossil record. Science, 219:12391240.Google Scholar
Racki, G. 1999. Silica-secreting biota and mass extinctions: survival patterns and processes. Palaeogeography Palaeoclimatology Palaeoecology, 154:107132.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology, 2:289297.CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science, 215:15011503.Google Scholar
Regan, H. M., Lupia, R., Drinnan, A. N., and Burgman, M. A. 2001. The currency and tempo of extinction. American Naturalist, 157:110.Google Scholar
Reichow, M. K., Pringle, M. S., Al'Mukhamedov, A. I., Allen, M. B., Andreichev, V. L., Buslov, M. M., Davies, C. E., Fedoseev, G. S., Fitton, J. G., Inger, S., Medvedev, A. Y., Mitchell, C., Puchkov, V. N., Safonova, I. Y., Scott, R. A., and Saunders, A. D. 2009. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters, 277:920.Google Scholar
Rosen, B. R. 2000. Algal symbiosis, and the collapse and recovery of reef communities: Lazarus corals across the K-T boundary, p. 164180 In Culver, S. J. and Rawson, P. F. (eds.), Biotic Response to Global Change: The Last 145 Million Years. Cambridge University Press, Cambridge.Google Scholar
Schlager, W. 1999. Scaling of sedimentation rates and drowning of reefs and carbonate platforms. Geology, 27:183186.Google Scholar
Schlager, W., Marsal, D., van der Geest, P., and Sprenger, A. 1998. Sedimentation rates, observation span, and the problem of spurious correlation. Mathematical Geology, 30:547556.CrossRefGoogle Scholar
Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T., and Willumsen, P. S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327:12141218.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature, 293:435437.Google Scholar
Silverman, J., Lazar, B., Cao, L., Caldeira, K., and Erez, J. 2009. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters, 36:L05606.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 356:351367.Google Scholar
Stanley, G. D., and van de Schootbrugge, B. 2009. The evolution of the coral-algal symbiosis, p. 719 In van Oppen, M. J. H. and Lough, J. M. (eds.), Coral Bleaching. Springer, Berlin.Google Scholar
Stanley, S. M., and Yang, X. 1994. A double mass extinction at the end of the Paleozoic era. Science, 266:13401344.Google Scholar
Svensen, H., Planke, S., Chevallier, L., Malthe-Sorenssen, A., Corfu, F., and Jamtveit, B. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters, 256:554566.Google Scholar
Thomas, E. 1998. Biogeography of the Late Paleocene benthic foraminiferal extinction, p. 214235 In Aubry, M.-P., Lucas, S. G., and Berggren, W. A. (eds.), Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Volume 416. Columbia University Press, New York.Google Scholar
Webb, G. E. 1996. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology, 43:947971.CrossRefGoogle Scholar
Webby, B. D. 2002. Patterns of Ordovician reef development, p. 129179 In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72, Tulsa.Google Scholar
Wilkinson, B. H., and Walker, J. C. G. 1989. Phanerozoic cycling of sedimentary carbonate. American Journal of Science, 289:525548.Google Scholar
Wilkinson, C. 1998. Status of coral reefs of the world: 1998. Australian Institute of Marine Science, and Global Coral Reef Monitoring Network, Townsville, Australia, 184 p.Google Scholar
Wilkinson, C. 2000. Status of coral reefs of the world: 2000. Australian Institute of Marine Science, and Global Coral Reef Monitoring Network, Townsville, Australia, 363 p.Google Scholar
Wilkinson, C. 2002. Status of coral reefs of the world: 2002. Global Coral Reef Monitoring Network and Australian Institute of Marine Science, Townsville, Australia, 378 p.Google Scholar
Wilkinson, C. 2004. Status of coral reefs of the world: 2004. Global Coral Reef Monitoring Network and Australian Institute of Marine Science, Townsville, Australia, 557 p.Google Scholar
Wilkinson, C. 2008. Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, Australia, 296 p.Google Scholar
Wold, C. N., and Hay, W. W. 1990. Estimating ancient sediment fluxes. American Journal of Science, 290:10691089.Google Scholar
Zachos, J. C., Rohl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science, 308:16111615.Google Scholar