Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T00:49:50.095Z Has data issue: false hasContentIssue false

Physiology

Published online by Cambridge University Press:  21 July 2017

Lloyd S. Peck*
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET England, UK
Get access

Extract

Brachiopods are one of the few phyla to have lived in the world's oceans for the last 550 million years, since early Cambrian times. For much of that time they were the dominant shelled form in marine aquatic environments. Throughout all of this time their physiological structure has remained unchanged, and for some extant species their external anatomy is remarkably similar to early Cambrian forms (e.g., some inarticulated lingulids and some articulated rhynchonellides). They perform all of the basic physiological functions common to the vast majority of marine ectotherms, namely feeding, growth, reproduction, and metabolic and excretory processes. Their bodies are enclosed by two unequal shells, which are oriented dorsally and ventrally, as opposed to the lateral, equal shells in bivalve molluscs. The ventral valve in articulated species has a characteristic opening for the pedicle to pass through. In some articulated brachiopods the shells are traversed by many extensions of the mantle tissue called caeca (e.g., in Waltonia inconspicua, or Terebratulina retusa), while in others the shells form a continuous solid integument (e.g., rhynchonellides such as Notosaria nigricans). The former are the punctate brachiopods and the latter are impunctate species.

Type
Research Article
Copyright
Copyright © 2001 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, S. 1992. Rapid shell closure in the brachiopods Terebratulina retusa and Terebratalia transversa . Journal of the Marine Biological Association of the United Kingdom, 72:579598.Google Scholar
Atkins, D. 1960. The ciliary feeding mechanism of the Megathyride (Brachiopoda), and the growth stages of the lophophore. Journal of the Marine Biological Association of the United Kingdom, 39:459479.Google Scholar
Bayne, B. L., and Newell, R. C. 1983. Physiological energetics. In Saleuddin, A. S. and Wilbur, K. M. (eds.), The Mollusca, Academic Press, London, 4:407516.Google Scholar
Blochmann, F. 1885. Vorlüfige Mittheilung über Brachiopoden. Zoologischer Anzeiger, 8:164167.Google Scholar
Blochmann, F. 1892. Untersuchuingen über den Bau der Brachiopoden. I. Die Anatomie von Crania anomala (Müller) Gustav Fischer, Jena, 65 p.Google Scholar
Brey, T., Peck, L. S., Gutt, J., Hain, S., and Arntz, W. 1995. Population dynamics of Magellania fragilis, a brachiopod dominating a mixed-bottom macrobenthic assemblage on the Antarctic shelf. Journal of the Marine Biological Association of the United Kingdom, 75:857870.Google Scholar
Buchan, P., Peck, L. S., and Tublitz, N. 1988. A light, portable apparatus for the assessment of invertebrate heartbeat rate. Journal of Experimental Biology, 136:495498.Google Scholar
Bulman, O. M. B. 1939. Muscle systems of some articulate brachiopods. Geological Magazine, 76:434444.CrossRefGoogle Scholar
Chuang, S. H. 1956. The ciliary feeding mechanisms of Lingula unguis (L.) (Brachiopoda). Proceedings of the Zoological Society London, 127:167189.Google Scholar
Chuang, S. H. 1959. The structure and function of the alimentary canal in Lingula unguis (L.) (Brachiopoda). Proceedings of the Zoological Society London, 132:283311.CrossRefGoogle Scholar
Chuang, S. H. 1960. An anatomical, histological and histochemical study of the gut of the brachiopod Crania anomala . Quarterly Journal of Microscopical Science, 101:918.Google Scholar
Clarke, A., and Johnston, N. M. 1999. Scaling of metabolic rate and temperature in teleost fish. Journal of Animal Ecology, 68:893905.Google Scholar
Collins, M. J. 1991. Growth and substrate-related mortality of a benthic brachiopod population. Lethaia, 24:111.Google Scholar
Curry, G. B., and Ansell, A. D. 1986. Tissue mass in living brachiopods. Biostratigraphie du Paleozoique, 4:231241.Google Scholar
Curry, G. B., Peck, L. S., Ansell, A. D., and James, M. 1989. Physiological constraints in fossil and recent brachiopods. Transactions of the Royal Society of Edinburgh: Earth Sciences, 80:255262.Google Scholar
Dejours, P. 1981. Principles of Comparative Respiratory Physiology. Elsevier, New York, 253 p.Google Scholar
Dhar, S. R., Logan, A., MacDonald, B. A., and Ward, J. E. 1997. Endoscopic investigations of feeding structures and mechanisms in two plectolophous brachiopods. Invertebrate Biology, 116:142150.Google Scholar
D'Hondt, J.-L. 1986. Etude de l'intestin et da la glande digestive de Terebratulina retusa (L.) (Brachiopode). 4. Comparison avec les activities enzymatique d'autres brachiopodes du meme biotope. Biostratigraphie du Paléozoique, 4:301305.Google Scholar
D'Hondt, J.-L., and Boucaud-Camou, E. 1983. Etude de l'intstin et de la glande digestive de Terebratulina retusa (L.) (Brachiopode). II: Localisation d'activities enzymatiques. Bulletin de la Société Zoologique de France, 109:2736.Google Scholar
Hammen, C. S. 1969. Lactate and succinate oxidoreductases in marine invertebrates. Marine Biology, 4:233238.Google Scholar
Hammen, C. S. 1977. Brachiopod metabolism and enzymes. American Zoologist, 17:141147.Google Scholar
Hammen, C. S., and Lum, S. C. 1966. Fumarate reductase and succinate dehydrogenase activities in bivalve mollusks and brachiopods. Comparative Biochemistry and Physiology, 19:775781.CrossRefGoogle Scholar
Hochachka, P. W., and Somero, G. H. 1984. Biochemical Adaptation. Princeton University Press, Princeton. 480 p.CrossRefGoogle Scholar
James, M. A., Ansell, A. D., and Curry, G. B. 1991. Reproductive cycle of the brachiopod Terebratulina retusa on the west coast of Scotland. Marine Biology, 109:441451.Google Scholar
James, M. A., Ansell, A. D., Collins, M. J., Curry, G. B., Peck, L. S., and Rhodes, M. C. 1992. Recent advances in the study of living brachiopods. Advances in Marine Biology Review, 28:175387.Google Scholar
Jorgensen, C. B. 1981. A hydromechanical principle for particle retention in Mytilus edulis and other ciliary suspension feeders. Marine Biology, 61:277282.Google Scholar
Jorgensen, C. B., Kiørboe, T., Mohlenberg, F. and Riisgard, H. U. 1984. Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics. Marine Ecology Progress Series, 15:283292.Google Scholar
LaBarbera, M. 1977. Brachiopod orientation to water movement. I. Theory, laboratory behaviour and field observation. Paleobiology, 3:270287.Google Scholar
LaBarbera, M. 1981. Water flow patterns in and around three species of articulate brachiopods. Journal of Experimental Marine Biology and Ecology, 55:185206.Google Scholar
LaBarbera, M. 1984. Feeding currents and particle capture mechanisms in suspension feeding animals. American Zoologist, 24:7184.Google Scholar
LaBarbera, M. 1986. Brachiopod lophophores: functional diversity and scaling. Biostratigraphie du Paleozoique, 4:314321.Google Scholar
McCammon, H. M. 1981. Physiology of the brachiopod digestive system. In Broadhead, T. W. (ed.), Lophophorates, Notes for a Short Course. University of Tennessee Department of Geological Sciences, Studies in Geology, 5:170204.Google Scholar
Meidlinger, K., Tyler, P. A., and Peck, L. S. 1998. Reproductive patterns in the Antarctic brachiopod Liothyrella uva . Marine Biology, 132:153162.CrossRefGoogle Scholar
Morse, E. S. 1902. Observations on living Brachiopoda. Memoirs of the Boston Society for Natural History, 5:313386.Google Scholar
Peck, L. S. 1989. Temperature and basal metabolism in two Antarctic marine herbivores. Journal of Experimental Marine Biology and Ecology, 127:12.Google Scholar
Peck, L. S. 1993. The tissues of articulate brachiopods and their value to predators. Philosophical Transactions of the Royal Society of London B, 339:1732.Google Scholar
Peck, L. S. 1996. Feeding and metabolism in the Antarctic brachiopod Liothyrella uva: a low energy lifestyle species with restricted metabolic scope. Proceedings of the Royal Society of London B, 263:223228.Google Scholar
Peck, L. S. 1997. McGraw-Hill Yearbook of Science 1998, Brachiopoda, p. 3648.Google Scholar
Peck, L. S. 1998. Feeding, metabolism and metabolic scope in Antarctic ectotherms, p. 365389. In Pörtner, H. O. and Playle, R. C. (eds.), Cold Ocean Physiology. Society for Experimental Biology Seminar Series no. 66.Google Scholar
Peck, L. S. In press. Coping with change: stenothermy, physiological flexibility and environmental change in Antarctic seas. Proceedings of the 14th International Conference on Comparative Physiology, La Troina, Sicily, September 2000.Google Scholar
Peck, L. S., and Brey, T. 1996. Radiocarbon bomb signals verify biennial growth bands in the shells of 50 year old brachiopods from Antarctica. Nature, London, 380:206207.Google Scholar
Peck, L. S., and Chapelle, G. 2000. Amphipod gigantism dictated by oxygen availability? Reply. Ecology Letters, 2:401403.Google Scholar
Peck, L. S., and Conway, L. Z. 2000. The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves, p.441445. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), The Evolutionary Biology of the Bivalvia. Geological Society, London, Special Publications, 177.Google Scholar
Peck, L. S., Morris, D. J., and Clarke, A. 1986a. Oxygen consumption and the role of caeca in the Recent Antarctic brachiopod Liothyrella uva notorcadensis (Jackson 1912). Biostratigraphie du Paleozoique, 4:349355.Google Scholar
Peck, L. S., Morris, D. J., and Clarke, A. 1986b. The caeca of punctate brachiopods: a respiring tissue not a respiratory organ. Lethaia, 19:232.CrossRefGoogle Scholar
Peck, L. S., Morris, D. J., Clarke, A., and Holmes, L. J. 1986c. Oxygen consumption and nitrogen excretion in the Antarctic brachiopod Liothyrella uva (Jackson 1912) under simulated winter conditions. Journal of Experimental Marine Biology and Ecology, 104:203213.Google Scholar
Peck, L. S., Clarke, A., and Holmes, L. J. 1987a. Summer metabolism and seasonal changes in biochemical composition of the Antarctic brachiopod Liothyrella uva (Broderip 1833). Journal of Experimental Marine Biology and Ecology, 114:8597.CrossRefGoogle Scholar
Peck, L. S., Clarke, A., and Holmes, L. J. 1987b. Size, shape and the distribution of organic matter in the Antarctic brachiopod Liothyrella uva . Lethaia, 20:3340.Google Scholar
Peck, L. S., Brockington, S., and Brey, T. 1997a. Growth and metabolism in the Antarctic brachiopod Liothyrella uva . Philosophical Transactions of the Royal Society of London, 352:851858.Google Scholar
Peck, L. S., Ansell, A. D., Curry, G. B., and Rhodes, M. 1997b. Physiology and metabolism p. 213242. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Part H, revised, Brachiopoda, Volume 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Pörtner, H. O., Hardewig, I., and Peck, L. S. 1999b. Mitochondrial function and critical temperature in the Antarctic bivalve Laternula elliptica . Comparative Biochemistry and Physiology, 124A, 179189.CrossRefGoogle Scholar
Pörtner, H. O., Peck, L. S., Zielinski, S., and Conway, L. Z. 1999a. Intracellular pH and energy metabolism in the highly stenothermal Antarctic bivalve Limopsis marionensis as a function of ambient temperature. Pol. Biol., in press.Google Scholar
Pörtner, H. O., van Dijk, P., Hardewig, I., and Sommer, A. 2000. Levels of metabolic cold adaptation: tradeoffs in eurythermal and stenothermal ectotherms, p. 109122. In Davison, W. and Howard Williams, C. (eds.), Antarctic Ecosystems: models for wider ecological understanding; Caxton Press, Christchurch, New Zealand.Google Scholar
Rhodes, M. C., and Thayer, C. W. 1991. Effects of turbidity on suspension feeding: are brachiopods better than bivalves?, p. 191196. In McKinnon, D. I., Lee, D. E., and Campbell, J. D. (eds.), Brachiopods Through Time. A.A. Balkema, Rotterdam.Google Scholar
Rhodes, M. C., and Thompson, R. J. 1993. Comparative physiology of suspension feeding in living brachiopods and bivalves: evolutionary implications. Paleobiology, 19:322334.Google Scholar
Rubenstein, D. I., and Koehl, M. A. R. 1977. The mechanisms of filter feeding: some theoretical considerations. American Naturalist, 111:981994.Google Scholar
Rudwick, M. J. S. 1961. ‘Quick’ and ‘catch’ adductor muscles in brachiopods. Nature, 191:1021.Google Scholar
Rudwick, M. J. S. 1962. Filter-feeding mechanisms in some brachiopods from New Zealand. Journal of the Linnean Society Zoology, 44:592615.Google Scholar
Rudwick, M. J. S. 1970. Living and Fossil Brachiopods. Hutchinson & Co. Ltd, London.Google Scholar
Scheid, M. J., and Awapara, J. 1972. Stereospecificity of some invertebrate lactic dehydrogenases. Comparative Biochemistry and Physiology, 43B:619626.Google Scholar
Shipley, A. E., and Reed, F. R. C. 1895. Brachiopods, p. 463512. In Harmer, S. F. and Shipley, A. E. (eds.), The Cambridge Natural History, Volume III.Google Scholar
Shumway, S. 1982. Oxygen consumption in brachiopods and the possible role of punctae. Journal of Experimental Marine Biology and Ecology, 58:207220.Google Scholar
Steele-Petrovic, H. M. 1976. Brachiopod food and feeding processes. Palaeontology, 19:417436.Google Scholar
Storch, V., and Welsch, U. 1975. Elektonnenmikroskopische und enzymhistochemische untersuchungen über die mitteldarmdrüse von Lingula unguis L. (Brachiopoda). Zoologische Jahrbücher, abteilung für Anatomie und Ontogenie der Tiere, 94:441452.Google Scholar
Strathmann, R. R. 1973. Function of lateral cilia in suspension feeding of lophophorates (Brachiopoda, Phoronida, Ectoporcta). Marine Biology, 23:129136.Google Scholar
Taddei-Ruggiero, E. In press. Brachiopods of the Isca submarine cave: observations over ten years. In Brunton, C. H. C., Long, S. and Cocks, R. (eds.), Proceedings of the 4th International Congress on Brachiopods, London, July, 2000.Google Scholar
Thayer, C. W. 1986. Respiration and the function of brachiopod punctae. Lethaia, 19:2331.Google Scholar
Tkachuck, R. D., Rosenberg, G. D., and Hughes, W. W. 1989. Utilization of free amino acids by mantle tissue of the brachiopod Terebratalia transversa and the bivalve mollusc Chlamys hastata . Comparative Biochemistry and Physiology, 92B:747750.Google Scholar
Westbroek, P., Yanagida, J., and Isa, Y. 1980. Functional morphology of brachiopod and coral skeletal structures supporting ciliated epithelia. Paleobiology, 6:313330.CrossRefGoogle Scholar
Wilkens, J. L. 1978a. Adductor muscles of brachiopods: activation and contraction. Canadian Journal of Zoology, 56:315323.CrossRefGoogle Scholar
Wilkens, J. L. 1978b. Diductor muscles of brachiopods: activation and very slow contraction. Canadian Journal of Zoology, 56:324332.Google Scholar
Williams, A., James, M. A., Emig, C. C., Mackay, S., and Rhodes, M. C. 1997. Anatomy, p. 7188. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology Part H, revised, Brachiopoda, Volume 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar