Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T01:12:33.778Z Has data issue: false hasContentIssue false

Probabilistic Phylogenetic Inference in the Fossil Record: Current and Future Applications

Published online by Cambridge University Press:  21 July 2017

Peter J. Wagner
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution [NHB, MRC 121], P.O. Box 37012, Washington DC 20013-7012
Jonathan D. Marcot
Affiliation:
Department of Animal Biology, University of Illinois, 515 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL, 61801
Get access

Abstract

Quantitative phylogenetic inference estimates the probability of observed character distributions given trees and rates. Most available programs for doing this assume (tacitly or explicitly) that the sampled taxa are contemporaneous. However, paleontologists usually sample taxa over a clade's history. Thus, we must estimate the probability of observed character-state distributions over time given trees and rates. When we include information about sampling intensity, then we really are estimating the probability of the observed record given trees and rates. Some additional problems that should be issues for neontologists, but which are much more obvious concerns for paleontologists include: 1) ancestor-descendant relationships; 2) punctuated versus continuous morphological change; and, 3) the effects of extinction and speciation rates on prior probabilities of trees. Future goals of paleosystematists include incorporating these and other “nuisance” parameters so that, ultimately, our tests of phylogeny are really tests of evolutionary histories.

Type
Morphological Data
Copyright
Copyright © 2010 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J. 1995. Continuous track analysis: a new phylogenetic and biogeographic method. Systematic Biology 44:152178.Google Scholar
Alroy, J. 2000. Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319329.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences 105:1153611542.Google Scholar
Alroy, J., Aberhan, M., Bother, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borrow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomasovych, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.CrossRefGoogle ScholarPubMed
Ayache, N. C., and Near, T. J. 2009. The utility of morphological data in resolving phylogenetic relationships of darters as exemplified with Etheostoma (Teleostei: Percidae). Bulletin of the Peabody Museum of Natural History, Yale University 50:327346.Google Scholar
Beck, R. M. D., Godthelp, H., Weisbecker, V., Archer, M., and Hand, S. J. 2008. Australia's oldest marsupial fossils and their biogeographical implications. PLoS ONE 3:e1858.Google Scholar
Bokma, F. 2008. Bayesian estimation of speciation and extinction probabilities from (in)complete phylogenies. Evolution 62:24412445.Google Scholar
Brusatte, S. L. 2010. Representing supraspecific taxa in higher-level phylogenetic analyses: guidelines for palaeontologists. Palaeontology 53:19.Google Scholar
Burnham, K. P., and Anderson, D. R. 2002. Model Selection and Inference: a practical Information-Theoretic approach. Springer, New York, 488 p.Google Scholar
Buzas, M. A., Koch, C. F., Culver, S. J., and Sohl, N. F. 1982. On the distribution of species occurrence. Paleobiology 8:143150.Google Scholar
Clarke, J. A., and Middleton, K. M. 2008. Mosaicism, modules, and the evolution of birds: results from a Bayesian approach to the study of morphological evolution using discrete character data. Systematic Biology 57:185201.CrossRefGoogle Scholar
Donoghue, M. J., Doyle, J. A., Gauthier, J. A., Kluge, A. G., and Rowe, T. 1989. The importance of fossils in phylogeny reconstruction. Annual Review of Ecology and Systematics 20:431460.CrossRefGoogle Scholar
Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4:e88.Google Scholar
Edwards, A. W. F. 1992. Likelihood - Expanded edition. Johns Hopkins University Press, Baltimore, 275 p.Google Scholar
Edwards, A. W. F., and Cavalli-Sforza, L. L. 1964. Reconstruction of evolutionary trees, p. 67 - 76. In Heywood, J. H. and McNeil, J. (eds.), Phenetic and phylogenetic classification. Systematic Association, London.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated Equilibria: an Alternative to Phyletic Gradualism, p. 82 – 115. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, San Francisco.Google Scholar
Felsenstein, J. 1973. Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology 22:240249.Google Scholar
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368376.Google Scholar
Felsenstein, J. 1988. Phylogenies from molecular sequences: inferences and reliability. Annual Review of Genetics 22:521565.Google Scholar
Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts, 664 p.Google Scholar
Fisher, D. C. 1994. Stratocladistics: Morphological and Temporal Patterns and Their Relation to Phylogenetic Process, p. 133171. In Grande, L. and Rieppel, O. (eds.), Interpreting the Hierarchy of Nature - from Systematic Patterns to Evolutionary Process Theories. Academic Press, Orlando, Florida.Google Scholar
Fisher, D. C. 2008. Stratocladistics: integrating temporal data and character data in phylogenetic inference. Annual Review of Ecology, Evolution, and Systematics 39:365385.Google Scholar
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford, 272.Google Scholar
Foote, M. 1996a. Models of Morphologic Diversification, p. 6286. In Jablonski, D., Erwin, D. H., and Lipps, J. H. (eds.), Evolutionary Paleobiology: Essays in Honor of James W. Valentine. University of Chicago Press, Chicago.Google Scholar
Foote, M. 1996b. On the probability of ancestors in the fossil record. Paleobiology 22:141151.Google Scholar
Foote, M. 1996c. Perspective: evolutionary patterns in the fossil record. Evolution 50:111.Google Scholar
Foote, M. 1997. Estimating taxonomic durations and preservation probability. Paleobiology 23:278300.CrossRefGoogle Scholar
Foote, M. 2001. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602630.Google Scholar
Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.Google Scholar
Fröbisch, N. B., and Schoch, R. R. 2009. Testing the impact of miniaturization on phylogeny: Paleozoic dissorophoid amphibians. Systematic Biology 58:312327.CrossRefGoogle ScholarPubMed
Funk, D. J., and Omland, K. E. 2003. Species-level paraphyly and polyphyly: frequency, causes and consquences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics 34:397423.Google Scholar
Futuyma, D. J. 1987. On the role of species in anagenesis. The American Naturalist 130:465473.Google Scholar
Galtier, N., Gascuel, O., and Jean-Marie, A. 2005. Markov Models in Molecular Evolution, p. 324. In Nielsen, R. (ed.), Statististical Methods in Molecular Evolution. Springer, New York.Google Scholar
Gatesy, J. E. 2007. A tenth crucial question regarding model use in phylogenetics. Trends in Ecology and Evolution 22:509.Google Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. American Journal of Science 276:128.Google Scholar
Glenner, H., Hansen, A. J., Sørensen, M. V., Ronquist, F., Huelsenbeck, J. P., and Willerslev, E. 2004. Bayesian inference of metazoan phylogeny: a combined molecular and morphological approach. Current Biology 14:16441649.Google Scholar
Goldberg, E. E., and Igić, B. 2008. On phylogenetic tests of irreversible evolution. Evolution 62:27272741.Google Scholar
Goldman, N. 1990. Maximum likelihood inference of phylogenetic trees, with special reference to a Poisson process model of DNA substitution and to parsimony analysis. Systematic Zoology 39:345361.Google Scholar
Haldane, J. B. S. 1949. Suggestions as to quantitative measurement of rates of evolution. Evolution 3:5156.Google Scholar
Harcourt-Brown, K. G., Pearson, P. N., and Wilkinson, M. 2001. The imbalance of paleontological trees. Paleobiology 27:188204.Google Scholar
Heard, S. B. 1996. Patterns in phylogenetic tree balance with variable and evolving speciation rates. Evolution 50:21412148.Google Scholar
Hillis, D. M. 1995. Approaches for assessing phylogenetic accuracy. Systematic Biology 44:316.Google Scholar
Huelsenbeck, J. P. 1995. Performance of Phylogenetic Methods in Simulation. Systematic Biology 44:1748.Google Scholar
Huelsenbeck, J. P., Hillis, D. M., and Jones, R. 1996. Parametric bootstrapping in molecular phylogenetics: applications and performance, p. 19 – 45. In Ferraris, J. D. and Palumbi, S. R. (eds.), Molecular Zoology: Advances, Strategies and Protocols. Wiley - Liss, New York.Google Scholar
Huelsenbeck, J. P., Larget, B., and Swofford, D. 2000. A compound Poisson Process for relaxing the molecular clock. Genetics 154:18791892.Google Scholar
Huelsenbeck, J. P., and Rannala, B. 1997a. Maximum likelihood estimation of topology and node times using stratigraphic data. Paleobiology 23:174180.Google Scholar
Huelsenbeck, J. P., and Rannala, B. 1997b. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227232.Google Scholar
Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:23102314.Google Scholar
Huelsenbeck, J. P., and Suchard, M. A. 2007. A nonparametric method for accommodating and testing across-site rate variation. Systematic Biology 56:975987.Google Scholar
Kelchner, S. A., and Thomas, M. A. 2007. Model use in phyogenetics: nine key questions. Trends in Ecology and. Evolution 22:8894.Google Scholar
Kim, J., and Sanderson, M. J. 2008. Penalized Likelihood Phylogenetic Inference: bridging the parsimony-likelihood gap. Systematic Biology 57:665674.Google Scholar
Lane, A., Janis, C. M., and Sepkoski, J. J. Jr. 2005. Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology 31:2134.Google Scholar
Lewis, P. O. 2001. Maximum likelihood phylogenetic inference: modeling discrete morphological characters. Systematic Biology 50:913925.Google Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:319332.Google Scholar
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.Google Scholar
Mooers, A. Ø., and Heard, S. B. 1997. Inferring evolutionary processes from phylogenetic tree shape. Quarterly Review of Biology 72:3154.Google Scholar
Müller, J., and Reisz, R. R. 2006. The phylogeny of early eureptiles: comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade. Systematic Biology 55:503511.Google Scholar
Nee, S., May, R. M., and Harvey, P. H. 1994. The reconstructed evolutionary process. Philosophical Transactions of the Royal Society of London, series B 344:305311.Google Scholar
Norell, M. A. 1993. Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. American Journal of Science 293:407417.Google Scholar
Pagel, M. D. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26:331348.Google Scholar
Pagel, M. D. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48:612622.Google Scholar
Pollitt, J. R., Fortey, R. A., and Wills, M. A. 2005. Systematics of the trilobite families Lichidae Hawle & Corda, 1847 and Lichakephalidae Tripp, 1957: the application of Bayesian inference to morphological data. Journal of Systematic Palaeontology 3:225241.Google Scholar
Rannala, B., and Yang, Z. 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43:304311.Google Scholar
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.Google Scholar
Ruta, M., Wagner, P. J., and Coaxes, M. I. 2006. Evolutionary patterns in early tetrapods. I. Rapid initial diversification by decrease in rates of character change. Proceedings of the Royal Society of London, Series B. Biological Sciences 273:21072111.Google Scholar
Sanderson, M. J. 1993. Reversibility in evolution: a maximum likelihood approach to character gain/loss bias in phylogenies. Evolution 47:236252.Google Scholar
Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19:101109.Google Scholar
Signor, P. W. III and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophies in the fossil record. Geological Society of America Special Paper 190:291296.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology 31:799828.Google Scholar
Smith, A. B. 1994. Systematics and the Fossil Record - Documenting Evolutionary Patterns. Blackwell Scientific Publications, Oxford, 223 p.Google Scholar
Snively, E., Russell, A. P., and Powell, G. L. 2004. Evolutionary' morphology of the coelurosaurian arctometatarsus: descriptive, morphometric and phylogenetic approaches. Zoological Journal of the Linnean Society 142:525553.Google Scholar
Solow, A. R., and Smith, W. K. 1997. On fossil preservation and the stratigraphic ranges of taxa. Paleobiology 23:271277.Google Scholar
Swofford, D. L., Olsen, G. J., Waddell, P. J., and Hillis, D. M. 1996. Phylogenetic inference, p. 407514. In Hillis, D. M., Moritz, C., and Mable, B. K. (eds.), Molecular Systematics. Sinauer Associates, Sunderland, MA.Google Scholar
Thorne, J. L., Kishino, H., and Painter, I. S. 1998. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution 15:16471657.Google Scholar
Wagner, P. J. 1995. Stratigraphic tests of cladistic hypotheses. Paleobiology 21:153178.Google Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology 23:115150.Google Scholar
Wagner, P. J. 2000a. Likelihood tests of hypothesized durations: determining and accommodating biasing factors. Paleobiology 26:431449.Google Scholar
Wagner, P. J. 2000b. Phylogenetic analyses and the fossil record: tests and inferences, hypotheses and models, p. 341371. In Erwin, D. H. and Wing, S. L. (eds.), Paleobiology Memoir 26 (Suppl. to No. 4).Google Scholar
Wagner, P. J. 2000c. The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Systematic Biology 49:6586.Google Scholar
Wagner, P. J. 2001. Rate heterogeneity in shell character evolution among lophospiroid gastropods. Paleobiology 27:290310.2.0.CO;2>CrossRefGoogle Scholar
Wagner, P. J., and Erwin, D. H. 1995. Phylogenetic tests of speciation hypotheses, p. 87122. In Erwin, D. H. and Anstey, R. L. (eds.), New approaches to studying speciation in the fossil record. Columbia University Press, New York.Google Scholar
Wang, S. C. 2001. Quantifying passive and driven large-scale evolutionary trends. Evolution 55:849858.Google Scholar
Wang, S. C., and Everson, P. J. 2007. Confidence intervals for pulsed mass extinction events. Paleobiology 33:324336.Google Scholar
Wiens, J. J., Bonett, R. M., and Chippindale, P. T. 2005. Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Systematic Biology 54:91110.Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97159.Google Scholar
Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10:13961401.Google ScholarPubMed
Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution 39:306314.Google Scholar
Yang, Z. 1996. Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology and Evolution 11:367372.Google Scholar
Yang, Z., and Rannala, B. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Molecular Biology and Evolution 14:717724.Google Scholar