Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T06:49:16.269Z Has data issue: false hasContentIssue false

Quantifying Seafood Through Time: Counting Calories in the Fossil Record

Published online by Cambridge University Press:  21 July 2017

Seth Finnegan*
Affiliation:
Department of Integrative Biology, University of California, Berkeley, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140 USA
Get access

Abstract

Energy and nutrients are the fundamental currencies of ecology and changes in energy and nutrient availability are thought to have played an important role in the long-term development of marine ecosystems. However, meaningfully quantifying when, where, and how such changes have occurred has been a difficult and longstanding problem. Here, some of the various lines of evidence that have been brought to bear on this issue in the past two decades are reviewed, particularly those based on the fossil record of benthic invertebrates. This paper focuses on abundance, body size, and metabolism, three distinct but closely interrelated aspects of ecosystem structure that control (or are controlled by) energy fluxes. Each of these is subject to biases and inherent uncertainties that present significant challenges for making inferences from the fossil record, but when carefully controlling for environmental, taphonomic, and methodological variations there are robust trends that can be discerned above the noise. Integrating these different types of data in a single quantitative framework presents additional complications, but coherent patterns emerge from some such analyses. Accurate quantification of energetic trends in the fossil record is difficult but is a worthwhile goal because of its potential to illuminate the energetic dimension of major diversifications, extinctions, and secular ecological-evolutionary trends and link them more directly to their Earth Systems context.

Type
Research Article
Copyright
Copyright © 2013 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M., Kiessling, W., and Fürsich, F. T. 2006. Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology, 32:259277.Google Scholar
Aberhan, M., Weidemeyer, S., Kiessling, W., Scasso, R. A., and Medina, F. A. 2007. Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous–Paleogene boundary sections. Geology, 35:227230.Google Scholar
Adrain, J. M., Westrop, S. R., Chatterton, B. D. E., and Ramskold, L. 2000. Silurian trilobite alpha diversity and the end-Ordovician mass extinction. Paleobiology, 26:625646.2.0.CO;2>CrossRefGoogle Scholar
Aitchison, J. 1982. The statistical analysis of compositional data (with discussion). Journal of the Royal Statistical Society Series B (Statistical Methodology), 44:139177.Google Scholar
Albert, J. A., and Johnson, D. M. 2012. Diversity and evolution of body size in fishes. Evolutionary Biology, 39:324340.Google Scholar
Algeo, T. J., and Scheckler, S. E. 1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 353:113128.Google Scholar
Allen, A. P., Brown, J. H., and Gillooly, J. F. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297:15451548.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., and Kiessling, W. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science, 321:97100.CrossRefGoogle ScholarPubMed
Ballanti, L. A., Tullis, A., and Ward, P. D. 2012. Comparison of oxygen consumption by Terebratalia transversa (Brachiopoda) and two species of pteriomorph bivalve molluscs: implications for surviving mass extinctions. Paleobiology, 38:525537.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology, 3:152167.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety; the ecology of diversification in marine faunas through the Phanerozoic, p. 191253. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Marcoevolution. Princeton University Press, Princeton, New Jersey.Google Scholar
Bambach, R. K. 1993. Seafood through time—changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology, 19:372397.Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: A connection between terrestrial diversification and change in the marine biosphere. Geobios, 32:131144.CrossRefGoogle Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences of the United States of America, 99:68546859.Google Scholar
Bambach, R. K., and White, R. D. 2002. Supporting predators: changes in the global ecosystem inferred from changes in predator diversity, p. 319352. In Kowalewski, M. and Kelley, P. H. (eds.), The Fossil Record of Predation. The Paleontological Society Papers 8, Yale Press, New Haven.Google Scholar
Barkai, R., and Griffiths, C. 1988. An energy budget for the South African abalone Haliotis midae Linnaeus. Journal of Molluscan Studies, 54:4351.Google Scholar
Baumiller, T. K., and Labarbera, M. 1989. Metabolic rates of Caribbean crinoids (Echinodermata), with special reference to deep-water stalked and stalkless taxa. Comparative Biochemistry and Physiology Part A: Physiology, 93:391394.Google Scholar
Belanger, C. L., Jablonski, D., Roy, K., Berke, S. K., Krug, A. Z., and Valentine, J. W. 2012. Global environmental predictors of benthic marine biogeographic structure. Proceedings of the National Academy of Sciences, 109:1404614051.Google Scholar
Berke, S. K., Jablonski, D., Krug, A. Z., Roy, K., and Tomašových, A. 2013. Beyond Bergmann's rule: size-latitude relationships in marine Bivalvia worldwide. Global Ecology and Biogeography, 22:173183.Google Scholar
Bonner, J. T. 2006. Why Size Matters: From Bacteria to Blue Whales. Princeton University Press, Princeton, New Jersey.Google Scholar
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10:17.Google Scholar
Brandt, D. S. 1986. Preservation of event beds through time. PALAIOS, 1:9296.CrossRefGoogle Scholar
Brayard, A., Nützel, A., Stephen, D. A., Bylund, K. G., Jenks, J., and Bucher, H. 2010. Gastropod evidence against the Early Triassic Lilliput effect. Geology, 38:147150.Google Scholar
Brey, T. 2001. Population dynamics in benthic invertebrates. A virtual handbook. v01.2. Alfred Wegener Institute for Polar and Marine Research, Germany. http://www.awi-bremerhaven.de/Benthic/Ecosystem/FoodWeb/Handbook/main.html.Google Scholar
Brey, T. 2010. An empirical model for estimating aquatic invertebrate respiration. Methods in Ecology and Evolution, 1:92101.CrossRefGoogle Scholar
Brey, T., Rumohr, H., and Ankar, S. 1988. Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. Journal of Experimental Marine Biology and Ecology, 117:271278.CrossRefGoogle Scholar
Brocks, J. J., and Pearson, A. 2005. Building the biomarker Tree of Life. Reviews in Mineralogy and Geochemistry, 59:233258.Google Scholar
Brown, E. L., Charnov, B. J. E., West, G. B., and James, H. 1999. Allometric scaling of production and life-history variation in vascular plants. Nature, 401:866907.Google Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B. 2004. Toward a metabolic theory of ecology. Ecology, 85:17711789.Google Scholar
Brown, J. H., and Maurer, B. A. 1989. Macroecology: the division of food and space among species on continents. Science, 243:11451150.Google Scholar
Bush, A. M., and Bambach, R. K. 2004. Are secular changes in tiering, motility, and predation real? Quantifying and testing changes in ecospace use between the Paleozoic and Cenozoic. Geological Society of America Annual Meeting Abstracts with Program, 36:457.Google Scholar
Bush, A. M., and Bambach, R. K. 2011. Paleoecologic megatrends in marine metazoa. Annual Review of Earth and Planetary Science, 39:241269.Google Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology, 33:7697.Google Scholar
Bush, A. M., Bambach, R. K., and Parrish, J. T. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology, 112:625642.Google Scholar
Butterfield, N. J. 2011. Was the Devonian radiation of large predatory fish a consequence of rising atmospheric oxygen concentration? Proceedings of the National Academy of Sciences, 108:E28.Google Scholar
Clapham, M. E., and Bottjer, D. J. 2007. Permian marine paleoecology and its implications for large-scale decoupling of brachiopod and bivalve abundance and diversity during the Lopingian (Late Permian). Palaeogeography, Palaeoclimatology, Palaeoecology, 249:283301.Google Scholar
Clapham, M. E., Bottjer, D. J., Powers, C. M., Bonuso, N., Fraiser, M. L., Marenco, P. J., Dornbos, S. Q., and Pruss, S. B. 2006. Assessing the ecological dominance of Phanerozoic marine invertebrates. PALAIOS, 21:431441.Google Scholar
Cloud, P. 1972. A working model of the primitive Earth. American Journal of Science, 272:537548.Google Scholar
Cummins, H., Powell, E., Stanton, R. Jr., and Staff, G. 1986. The size-frequency distribution in palaeoecology: effects of taphonomic processes during formation of molluscan death assemblages in Texas bays. Palaeontology, 29:495518.Google Scholar
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., and Canfield, D. E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences, 107:1791117915.Google Scholar
Damuth, J. 1991. Of size and abundance. Nature, 351:268269.Google Scholar
Davies, D. J., Powell, E. N., and Stanton, R. J. 1989. Relative rates of shell dissolution and net sediment accumulation—a commentary: can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia, 22:207212.CrossRefGoogle Scholar
De Leo, F. C., Smith, C. R., Rowden, A. A., Bowden, D. A., and Clark, M. R. 2010. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proceedings of the Royal Society of London Series B: Biological Sciences, 277:27832792.Google Scholar
Dinmore, T. A., and Jennings, S. 2004. Predicting abundance-body mass relationships in benthic infaunal communities. Marine Ecology-Progress Series, 276:289292.CrossRefGoogle Scholar
Droser, M. L., and Bottjer, D. J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology, 16:233236.Google Scholar
Droser, M. L., and Bottjer, D. J. 1989. Ordovician Increase in extent and depth of bioturbation—implications for understanding early Paleozoic ecospace utilization. Geology, 17:850852.Google Scholar
Droser, M., and Bottjer, D. 1993. Trends and patterns of Phanerozoic ichnofabrics. Annual Review of Earth and Planetary Sciences, 21:205225.Google Scholar
Enquist, B. J., Economo, E. P., Huxman, T. E., Allen, A. P., Ignace, D. D., and Gillooly, J. F. 2003. Scaling metabolism from organisms to ecosystems. Nature, 423:639642.Google Scholar
Ernest, S. K. M., Enquist, B. J., Brown, J. H., Charnov, E. L., Gillooly, J. F., Savage, V. M., White, E. P., Smith, F. A., Hadly, E. A., Haskell, J. P., Lyons, S. K., Maurer, B. A., Niklas, K. J., and Tiffney, B. 2003. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters, 6:990995.Google Scholar
Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., and Taylor, F. J. R. 2004. The evolution of modern eukaryotic phytoplankton. Science, 305:354360.Google Scholar
Finnegan, S., and Droser, M. L. 2005. Relative and absolute abundance of trilobites and rhychonelliform brachiopods across the Lower/Middle Ordovician boundary, eastern Basin and Range. Paleobiology, 31:480502.Google Scholar
Finnegan, S., and Droser, M. L. 2008. Body size, energetics, and the Ordovician restructuring of marine ecosystems. Paleobiology, 34:342359.Google Scholar
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 109:6829–34.Google Scholar
Finnegan, S., McClain, C. M., Kosnik, M. A., and Payne, J. L. 2011. Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology, 37:252269.Google Scholar
Fraiser, M. L., and Bottjer, D. J. 2004. The nonactualistic Early Triassic gastropod fauna: A case study of the Lower Triassic Sinbad Limestone member. PALAIOS, 19:259275.Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L. 2001. Effects of size and temperature on metabolic rate. Science, 293:22482251.Google Scholar
Glazier, D. S. 2005. Beyond the ‘3/4-power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biological Reviews of the Cambridge Philosophical Society, 80:611–62.Google Scholar
Glazier, D. S. 2006. The 3/4-power law is not universal: evolution of isometric, ontogenetic metabolic scaling in pelagic animals. Bioscience, 56:325332.Google Scholar
Glazier, D. S. 2010. A unifying explanation for diverse metabolic scaling in animals and plants. Biological Reviews of the Cambridge Philosophical Society, 85:111–38.Google Scholar
Gould, S. J. and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology, 6:383396.Google Scholar
Grayson, D. K. 1984. Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas. Studies in Archaeological Science, Academic Press, London.Google Scholar
Harries, P. J., and Knorr, P. O. 2009. What does the ‘Lilliput Effect’ mean? Palaeogeography, Palaeoclimatology, Palaeoecology, 284:410.Google Scholar
He, W., Shi, G. R., Feng, Q., Campi, M. J., Gu, S., Bu, J., Peng, Y., and Meng, Y. 2007. Brachiopod miniaturization and its possible causes during the Permian–Triassic crisis in deep water environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252:145163.Google Scholar
Heim, N. A., and Peters, S. E. 2010. Covariation in macrostratigraphic and macroevolutionary patterns in the marine record of North America. Geological Society of America Bulletin 123:620630.Google Scholar
Huebner, J., and Edwards, D. 1981. Energy budget of the predatory marine gastropod Polinices duplicatus . Marine Biology, 61:221226.Google Scholar
Hull, P. M., and Darroch, S. A. F. 2013. Mass extinctions and the structure and function of ecosystems, p. 115156. In Bush, A. M., Pruss, S. B., and Payne, J. L. (eds.), Ecosystem Paleobiology and Geobiology, The Paleontological Society Papers 19. Yale Press, New Haven.Google Scholar
Hull, P. M., Norris, R. D., Bralower, T. J., and Schueth, J. D. 2011. A role for chance in marine recovery from the end-Cretaceous extinction. Nature Geoscience, 4:856860.Google Scholar
Humphreys, W. F. 1979. Production and respiration in animal populations. Journal of Animal Ecology, 48:427453.Google Scholar
Hunt, G., and Roy, K. 2006. Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences of the United States of America, 103:13471352.Google Scholar
Ivany, L. C., and Huber, B. T. (EDS). 2012. Reconstructing Earth's Deep-Time Climate—The State of the Art in 2012. The Paleontological Society Papers 18, Yale Press, New Haven.Google Scholar
Jennings, S., Pinnegar, J. K., Polunin, N. V., and Boon, T. W. 2001. Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. Journal of Animal Ecology, 70:934944.Google Scholar
Johnson, N. A., Campbell, J. W., Moore, T. S., Rex, M. A., Etter, R. J., McClain, C. R., and Dowell, M. D. 2007. The relationship between the standing stock of deep-sea macrobenthos and surface production in the western North Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 54:13501360.Google Scholar
Kaariainen, J. I., and Bett, B. J. 2006. Evidence for benthic body size miniaturization in the deep sea. Journal of the Marine Biological Association of the United Kingdom, 86:13391345.Google Scholar
Katz, M. E., Cramer, B. S., Franzese, A., Hönisch, B. R., Miller, K. G., Rosenthal, Y., and Wright, J. D. 2010. Traditional and emerging geochemical proxies in Foraminifera. The Journal of Foraminiferal Research, 40:165192.Google Scholar
Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H., and Falkowski, P. G. 2004. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annual Review of Ecology Evolution and Systematics, 35:523556.Google Scholar
Kerr, S. R., Dickie, L. M., and Kerr, L. M. and Dickie, S. R. 2001. The Biomass Spectrum: A Predator-Prey Theory of Aquatic Production. Columbia University Press, New York.Google Scholar
Kidwell, S. M. 1986. Models for fossil concentrations: paleobiologic implications. Paleobiology, 12:624.Google Scholar
Kidwell, S. M., and Brenchley, P. J. 1994. Patterns in bioclastic accumulation through the Phanerozoic; changes in input or in destruction? Geology, 22:11391143.Google Scholar
Kidwell, S. M., and Brenchley, P. J. 1996. Evolution of the fossil record: Thickness trends in marine skeletal accumulations and their implications, p. 290336. In Erwin, D. H., Jablonski, D., and Lipps, J. H. (eds), Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Kidwell, S. M., Fuersich, F. T., Aigner, T., and Thomas, R. D. K. 1986. Conceptual framework for the analysis and classification of fossil concentrations. PALAIOS, 1:228238.Google Scholar
Kirchman, D. L., Morán, X. A. G., and Ducklow, H. 2009. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nature Reviews Microbiology, 7:451459.CrossRefGoogle ScholarPubMed
Kirchner, J. W., and Weil, A. 2000. Delayed biological recovery from extinctions throughout the fossil record. Nature, 404:177180.Google Scholar
Kosnik, M. A. 2005. Changes in Late Cretaceous–early Tertiary benthic marine assemblages: analyses from the North American coastal plain shallow shelf. Paleobiology, 31:459479.Google Scholar
Kosnik, M. A., Alroy, J., Behrensmeyer, A. K., Fürsich, F. T., Gastaldo, R. A., Kidwell, S. M., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Wagner, P. J. 2011. Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology, 37:303331.Google Scholar
Kosnik, M. A., Jablonski, D., Lockwood, R., and Novack-Gottshall, P. M. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: Maximizing the return on data-collection efforts. PALAIOS, 21:588597.Google Scholar
Kowalewski, M., Dulai, A., and Fürsich, F. T. 1998. A fossil record full of holes: The Phanerozoic history of drilling predation. Geology, 26:10911094.Google Scholar
Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and McCarthy, J. J. 2000. Temperature effects on export production in the open ocean. Global Biogeochemical Cycles, 14:12311246.Google Scholar
Li, X., and Droser, M. L. 1997. Nature and distribution of Cambrian shell concentrations: evidence from the Basin and Range Province of the western United States (California, Nevada, and Utah). PALAIOS, 12:111126.Google Scholar
Li, X., and Droser, M. L. 1999. Lower and Middle Ordovician shell beds from the Basin and Range province of the western United States (California, Nevada, and Utah). PALAIOS, 14:215233.Google Scholar
Lu, P. J., Yogo, M., and Marshall, C. R. 2006. Phanerozoic marine biodiversity dynamics in light of the incompleteness of the fossil record. Proceedings of the National Academy of Sciences of the United States of America, 103:27362739.Google Scholar
Lupia, R., Lidgard, S., and Crane, P. R. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology, 25:305340.Google Scholar
Lutz, M. J., Caldeira, K., Dunbar, R. B., and Behrenfeld, M. J. 2007. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112:C10011.Google Scholar
Makarieva, A. M., Gorshkov, V. G., Li, B.-L., Chown, S. L., Reich, P. B., and Gavrilov, V. M. 2008. Mean mass-specific metabolic rates are strikingly similar across life's major domains: evidence for life's metabolic optimum. Proceedings of the National Academy of Sciences, 105:1699416999.Google Scholar
Mangano, M. G., and Droser, M. L. 2004. The ichnologic record of the Ordovician radiation, p. 369379. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.Google Scholar
Marquet, P. A., Quinones, R. A., Abades, S., Labra, F., Tognelli, M., Arim, M., and Rivadeneira, M. 2005. Scaling and power-laws in ecological systems. Journal of Experimental Biology, 208:17491769.Google Scholar
Martin, R. E. 1996. Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere. PALAIOS, 11:209219.Google Scholar
Martin, R. E. 2003. The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia, 36:179193.Google Scholar
McClain, C. R. 2004. Connecting species richness, abundance and body size in deep-sea gastropods. Global Ecology and Biogeography, 13:327334.Google Scholar
McClain, C. R., Allen, A. P., Tittensor, D. P., and Rex, M. A. 2012. Energetics of life on the deep seafloor. Proceedings of the National Academy of Sciences, 109:1536615371.Google Scholar
McClain, C. R., Boyer, A. G., and Rosenberg, G. 2006. The island rule and the evolution of body size in the deep sea. Journal of Biogeography, 33:15781584.Google Scholar
McKinney, F. K., Lidgard, S., Sepkoski, J. J., and Taylor, P. D. 1998. Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science, 281:807809.Google Scholar
Moran, A. L., and Woods, H. A. 2012. Why might they be giants? Towards an understanding of polar gigantism. The Journal of Experimental Biology, 215:19952002.Google Scholar
Morton, B., and Chan, K. 1999. Hunger rapidly overrides the risk of predation in the subtidal scavenger Nassarius siquijorensis (Gastropoda: Nassariidae): an energy budget and a comparison with the intertidal Nassarius festivus in Hong Kong. Journal of Experimental Marine Biology and Ecology, 240:213228.Google Scholar
Nagy, K. A. 2005. Field metabolic rate and body size. Journal of Experimental Biology, 208:16211625.Google Scholar
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology, 33:274295.Google Scholar
Novack-Gottshall, P. M. 2008a. Using simple body-size metrics to estimate fossil body volume: Empirical validation using diverse Paleozoic invertebrates. PALAIOS, 23:163173.Google Scholar
Novack-Gottshall, P. M. 2008b. Ecosystem-wide body size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology, 34:163173.Google Scholar
Nützel, A., Joachimski, M., and López-Correa, M. 2010. Seasonal climatic fluctuations in the Late Triassic tropics—High-resolution oxygen isotope records from aragonitic bivalve shells (Cassian Formation, Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 285:194204.Google Scholar
Oji, T., Ogaya, C., and Sato, T. 2003. Increase of shell-crushing predation recorded in fossil shell fragmentation. Paleobiology, 29:520526.Google Scholar
Pauly, D. 2010. Gasping Fish and Panting Squids: Oxygen, Temperature and the Growth of Water-Breathing Animals. Excellence in Ecology 22, International Ecology Institute, Oldendorf/Luhe, Germany.Google Scholar
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology, 31:269290.Google Scholar
Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Krause, R. A. Jr, Smith, F. A., Stempien, J. A., and Wang, S. C. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences, 106:2427.Google Scholar
Payne, J. L., and Finnegan, S. 2006. Controls on marine animal biomass through geological time. Geobiology, 4:110.Google Scholar
Payne, J. L., Groves, J. R., Jost, A. B., Nguyen, T., Moffitt, S. E., Hill, T. M., and Skotheim, J. M. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution, 66:29292939.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J., and Knoll, A. H. 2006. The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. PALAIOS, 21:6385.Google Scholar
Payne, J. L., Lehrmann, D. J., Wei, J. Y., Orchard, M. J., Schrag, D. P., and Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science, 305:506509.Google Scholar
Payne, J. L., McClain, C. R., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A., Lyons, S. K., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Spaeth, P., Stempien, J. A., and Wang, S. C. 2011. The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynthesis Research, 107:3757.Google Scholar
Paytan, A. 2009. Ocean paleoproductivity, p. 644651. In Gornitz, V. (ed.), Encyclopedia of Paleoclimatology and Ancient Environments. Springer, Berlin.Google Scholar
Peck, L. S. 1992. Body volumes and internal space constraints in articulate brachiopods. Lethaia, 25:383390.Google Scholar
Peck, L. S. 1993. The tissues of articulate brachiopods and their value to predators. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 339:1732.Google Scholar
Peters, S. E. 2004. Evenness of Cambrian–Ordovician benthic marine communities in North America. Paleobiology, 30:325346.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences of the United States of America, 102:1232612331.Google Scholar
Peters, S. E. 2006. Genus richness in Cambrian–Ordovician benthic marine communities in North America. PALAIOS, 21:580587.Google Scholar
Peters, S. E. 2007. The problem with the Paleozoic. Paleobiology, 33:165181.Google Scholar
Peters, S. E., and Heim, N. A. 2010. The geological completeness of paleontological sampling in North America. Paleobiology, 36:6179.Google Scholar
Powell, E. N., Staff, G. M., Stanton, R. J., and Callender, W. R. 2001. Application of trophic transfer efficiency and age structure in the trophic analysis of fossil assemblages. Lethaia, 34:97118.Google Scholar
Powell, E. N., and Stanton, R. J. 1985. Estimating biomass and energy-flow of mollusks in paleocommunities. Palaeontology, 28:134.Google Scholar
Powell, E. N., and Stanton, R. J. Jr. 1996. The application of size-frequency distribution and energy flow in paleoecologic analysis: An example using parautochthonous death assemblages from a variable salinity bay. Palaeogeography, Palaeoclimatology, Palaeoecology, 124:195231.Google Scholar
Powell, E. N., Stanton, R. J. Jr., Logan, A., and Craig, M. A. 1992. Preservation of Mollusca in Copano Bay, Texas. The long-term record. Palaeogeography, Palaeoclimatology, Palaeoecology, 95:209228.Google Scholar
Price, C. A., Weitz, J. S., Savage, V. M., Stegen, J., Clarke, A., Coomes, D. A., Dodds, P. S., Etienne, R. S., Kerkhoff, A. J., McCulloh, K., Niklas, K. J., Olff, H., and Swenson, N. G. 2012. Testing the metabolic theory of ecology. Ecology Letters, 15:14651474.Google Scholar
Pruss, S. B., and Bottjer, D. J. 2004. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. PALAIOS, 19:551564.Google Scholar
Pruss, S. B., Finnegan, S., Fischer, W. W., and Knoll, A. H. 2010. Carbonates in skeleton-poor seas: New insights from Cambrian and Ordovician strata of Laurentia. PALAIOS, 25:7384.Google Scholar
Pruss, S., Fraiser, M., and Bottjer, D. J. 2004. Proliferation of Early Triassic wrinkle structures: Implications for environmental stress following the end-Permian mass extinction. Geology, 32:461464.Google Scholar
Ramezani, J., Jiayong, W., Enos, P., Montgomery, P., Payne, J. L., Orchard, M. J., Bowring, S. A., Martin, M. W., Hongmei, W., and Lehrmann, D. J. 2006. Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China. Geology, 34:10531056.Google Scholar
Rego, B. L., Wang, S. C., Altiner, D., and Payne, J. L. 2012. Within-and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of late Permian through Late Triassic foraminifera. Paleobiology 38:627643.Google Scholar
Rex, M. A. 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology Progress Series, 317:1.Google Scholar
Rex, M. A., Crame, J. A., Stuart, C. T., and Clarke, A. 2005. Large-scale biogeographic patterns in marine mollusks: a confluence of history and productivity? Ecology, 86:22882297.Google Scholar
Rex, M. A., Etter, R. J., Morris, J. S., Crouse, J., McClain, C. R., Johnson, N. A., Stuart, C. T., Deming, J. W., Thies, R., and Avery, R. 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Marine Ecology-Progress Series, 317:18.Google Scholar
Rhodes, M. C., and Thompson, R. J. 1993. Comparative physiology of suspension-feeding in living brachiopods and bivalves—evolutionary implications. Paleobiology, 19:322334.Google Scholar
Rodland, D. L., and Bottjer, D. J. 2001. Biotic recovery from the end-Permian mass extinction: Behavior of the inarticulate brachiopod Lingula as a disaster taxon. PALAIOS, 16:95101.Google Scholar
Roy, K. 2002. Bathymetry and body size in marine gastropods: a shallow water perspective. Marine Ecology Progress Series, 237:143149.Google Scholar
Roy, K., Jablonski, D., and Martien, K. K. 2000. Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences of the United States of America, 97:1315013155.Google Scholar
Ruhl, H. A., Ellena, J. A., and Smith, K. L. 2008. Connections between climate, food limitation, and carbon cycling in abyssal sediment communities. Proceedings of the National Academy of Sciences, 105:1700617011.Google Scholar
Savage, V. M., Deeds, E. J., and Fontana, W. 2008. Sizing up allometric scaling theory. PLoS Computational Biology, 4:e1000171.Google Scholar
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B., and Charnov, E. L. 2004a. Effects of body size and temperature on population growth. American Naturalist, 163:429441.Google Scholar
Savage, V. M., Gillooly, J. F., Woodruff, W. H., West, G. B., Allen, A. P., Enquist, B. J., and Brown, J. H. 2004b. The predominance of quarter-power scaling in biology. Functional Ecology, 18:257282.Google Scholar
Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S. 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry, 54:1961.Google Scholar
Schubert, J. K., and Bottjer, D. J. 1995. Aftermath of the Permian–Triassic mass extinction event—paleoecology of lower Triassic carbonates in the Western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116:139.Google Scholar
Schwinghamer, P., Hargrave, B., Peer, D., and Hawkins, C. M. 1986. Partitioning of production and respiration among size groups of organisms in an intertidal benthic community. Marine Ecology Progress Series, 31:131142.Google Scholar
Seibel, B. A. 2007. On the depth and scale of metabolic rate variation: scaling of oxygen consumption rates and enzymatic activity in the Class Cephalopoda (Mollusca). Journal of Experimental Biology, 210:111.Google Scholar
Seibel, B. A., and Drazen, J. C. 2007. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 362:20612078.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1996. Competition in macroevolution: the double wedge revisited, p. 211255. In Erwin, D. H., Jablonski, D., and Lipps, J. H. (eds), Evolutionary Paleobiology, University of Chicago Press, Chicago.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363:1560.Google Scholar
Sepkoski, J. J., Bambach, R. K., and Droser, M. L. 1991. Secular changes in Phanerozoic event bedding and the biological overprint, p. 299312. In Einsele, G., Ricken, W., and Seilacher, A. (eds.), Cycles and Events in Stratigraphy. Springer-Verlag, Berlin.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time, p. 153190. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press, Princeton, NJ.Google Scholar
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations, p. 673718. In Tevesz, P. L. and McCall, M. J. S. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.Google Scholar
Shurin, J. B., Gruner, D. S., and Hillebrand, H. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society of London Series B: Biological Sciences, 273:19.Google Scholar
Smith, A. B., and McGowan, A. 2008. Temporal patterns of barren intervals in the Phanerozoic. Paleobiology, 34:155161.Google Scholar
Smith, A. B., and Stockley, B. 2005. The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation. Proceedings of the Royal Society of London Series B: Biological Sciences, 272:865869.Google Scholar
Staff, G., Powell, E. N., Stanton, R. J., and Cummins, H. 1985. Biomass: is it a useful tool in paleocommunity reconstruction? Lethaia, 18:209232.Google Scholar
Staff, G. M., Stanton, R. J. Jr., Powell, E. M., and Cummins, H. 1986. Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: death assemblages in Texas bays. Geological Society Of America Bulletin, 97:428443.Google Scholar
Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X. 2012. Lethally hot temperatures during the Early Triassic Greenhouse. Science, 338:366370.Google Scholar
Tappan, H. 1982. Extinction or survival: selectivity and causes of Phanerozoic crises. Geological Society of America Special Papers 190:265276.Google Scholar
Tappan, H. 1986. Phytoplankton: below the salt at the global table. Journal of Paleontology, 60:545554.Google Scholar
Thayer, C. W. 1983. Sediment-mediated biological disturbance and the evolution of marine benthos, p. 480595. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.Google Scholar
Thayer, C. W. 1986. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates. Paleobiology, 12:161174.Google Scholar
Tomašových, A., and Kidwell, S. M. 2009. Preservation of spatial and environmental gradients by death assemblages. Paleobiology, 35:119145.Google Scholar
Tomašových, A., and Schlögl, J. N. 2008. Analyzing variations in cephalopod abundances in shell concentrations: The combined effects of production and density-dependent cementation rates. PALAIOS, 23:648666.Google Scholar
Tribovillard, N., Algeo, T., Lyons, T., and Riboulleau, A. 2006. Trace metal proxies for paleoredox and paleoproductivity. Chemical Geology, 232:1232.Google Scholar
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 252:132144.Google Scholar
Urbanek, A. 1993. Biotic crises in the history of upper Silurian graptoloids: a paleobiological model. Historical Biology, 7:2950.Google Scholar
Valentine, J. W. 1971. Resource supply and species diversity patterns. Lethaia, 4:5161.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
Valentine, J. W., and Moores, E. M. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature, 228:657659.Google Scholar
van de Schootbrugge, B., Bailey, T., Rosenthal, Y., Katz, M., Wright, J. D., Feist-Burkhardt, S., Miller, K. G., and Falkowski, P. G. 2005. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology, 31:7397.Google Scholar
van de Schootbrugge, and Gollner, S. 2013. Altered primary production during mass-extinction events, p. 87114. In Bush, A. M., Pruss, S. B., and Payne, J. L. (eds.), Ecosystem Paleobiology and Geobiology, The Paleontological Society Papers 19. Yale Press, New Haven.Google Scholar
Van Valen, L. 1976. Energy and evolution. Evolutionary Theory, 1:179229.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press, Princeton, New Jersey.Google Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology, 21:125152.Google Scholar
Vermeij, G. J. 2002. Evolution in the consumer age; predators and the history of life, p. 75393. In Kowalewski, M. and Kelley, P. H. (eds), The Fossil Record of Predation. The Paleontological Society Papers 8, Yale Press, New Haven.Google Scholar
Vermeij, G. J. 2004. Nature: An Economic History. Princeton University Press, Princeton, New Jersey.Google Scholar
Vladimirova, I. G. 2001. Standard metabolic rate in Gastropoda class. Biology Bulletin, 28:163169.Google Scholar
Vladimirova, I. G., Kleimenov, S. Y., and Radzinskaya, L. I. 2003. The relation of energy metabolism and body weight in bivalves (Mollusca: Bivalvia). Biology Bulletin of the Russian Academy of Sciences, 30:392399.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science, 314:12891292.Google Scholar
Warwick, R. M., and Clarke, K. R. 1996. Relationships between body-size, species abundance and diversity in marine benthic assemblages: Facts or artefacts? Journal of Experimental Marine Biology and Ecology, 202:6371.Google Scholar
Wei, C.-L., Rowe, G. T., Escobar-Briones, E., Boetius, A., Soltwedel, T., Caley, M. J., Soliman, Y., Huettmann, F., Qu, F., and Yu, Z. 2010. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE, 5:e15323.Google Scholar
Wei, C.-L., Rowe, G. T., Escobar-Briones, E., Nunnally, C., Soliman, Y., and Ellis, N. 2012. Standing stocks and body size of deep-sea macrofauna: Predicting the baseline of 2010 Deepwater Horizon oil spill in the northern Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers, 69:8299.Google Scholar
West, G. B. 2002. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proceedings of the National Academy of Sciences of the United States of America, 99:24732478.Google Scholar
West, G. B., Brown, J. H., and Enquist, B. J. 1997. A general model for the origin of allometric scaling laws in biology. Science, 276:122126.Google Scholar
West, G. B., Savage, V. M., Gillooly, J., Enquist, B. J., Woodruff, W. H., and Brown, J. H. 2003. Why does metabolic rate scale with body size? Nature, 421:713.Google Scholar
Westrop, S. R., Tremblay, J. V., and Landing, E. 1995. Declining importance of trilobites in Ordovician nearshore paleocommunities—dilution or displacement? PALAIOS, 10:7579.Google Scholar
White, C. R., Cassey, P., and Blackburn, T. M. 2007. Allometric exponents do not support a universal metabolic allometry. Ecology, 88:315323.Google Scholar
Witman, J. D., and Roy, K. 2009. Marine Macroecology. University of Chicago Press. Chicago.Google Scholar
Zardini, R. 1978. Fossili Cassiani (Trias Medio-Superiore): Atlante dei gasteropodi della formazione di S. Cassiano raccolti nella regione Dolomitica attorno a Cortina d'Ampezzo. Edizioni Ghedina, Cortina d'Ampezzo.Google Scholar