Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T01:00:23.612Z Has data issue: false hasContentIssue false

The Trophic Role of Marine Microorganisms Through Time

Published online by Cambridge University Press:  21 July 2017

Jere H. Lipps
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California 94720-3140 USA
Stephen J. Culver
Affiliation:
Department of Geology, East Carolina University, Greenville, North Carolina 27858-4353 USA
Get access

Abstract

Microorganisms (prokaryotes and protists) seldom fossilize, but they form much of the trophic structure in marine pelagic and benthic environments, chiefly as primary producers and secondary consumers. The fossil record of unskeletonized groups is meager or non-existent. Skeletonized groups have excellent records but represent a small portion of the total microbial diversity.

The evolution of trophic structures and roles of microorganisms can be reconstructed broadly for most of geologic history. When life first evolved, it had a trophic structure. The first microbial fossils appear to be benthic mats; these are abundant in the Precambrian but sparse later; body fossils are very rare. The Archean saw pelagic and benthic prokaryotes and possibly protists later on. Proterozoic trophic structures became increasingly complex as protists entered pelagic environments. Benthic assemblages likewise became complex, as prokaryotes and protists formed mats and stromatolites in many environments. At the end of the eon, animals appeared; microbial primary producers and predation on microorganisms and among animals fueled these assemblages. The fundamental trophic structures that developed then persisted with modification into modern times. Phanerozoic ecosystems became very complex as skeletonized animals and protists evolved. Among the important trophic developments in the Phanerozoic history of microorganisms were the early diversification of phytoplankton and siliceous micro-zooplankton (Cambrian), algal endosymbiosis with benthic metazoans (Cambrian to Recent) and rock-forming foraminifera (late Paleozoic to Recent), the radiation of pelagic skeletal primary producers and micro-zooplankton (mid-Mesozoic), and radiations in the deep sea, reefs, and shallow areas (Mesozoic and Cenozoic). Each evolutionary change increased trophic complexity by adding more species at each level, while episodic mass extinctions decreased species diversity and trophic complexity.

Marine trophic structures evolved over immense intervals of geologic time, growing complex and then suffering destruction at major extinction events. The effects of human impact on these structures should be examined, for without them, Earth may change dramatically.

Type
Section II: Patterns
Copyright
Copyright © 2002 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenbach, A. V., Pflaumann, U., Schiebel, R., Thies, A., Timm, S., and Trauth, M. 1999. Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon. Journal of Foraminiferal Research, 29:173185.Google Scholar
Anders, E. 1989. Prebiotic organic matter from comets and asteroids. Nature, 342:255257.CrossRefGoogle ScholarPubMed
Anderson, O. R. 1993. The trophic role of planktonic foraminifera and radiolaria Marine Microbial Food Webs, 7:3151.Google Scholar
Awramik, S. M. 1971. Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science, 174:825827.Google Scholar
Azam, F. 1998. Microbial control of oceanic carbon flux: the plot thickens. Science, 280:694696.Google Scholar
Bada, J. L., and Lazcano, A. 2002. Some like it hot, but not the first biomolecules. Science, 296:19821983.Google Scholar
Bengtson, S., and Zhao, Y. 1992. Predatorial borings in Late Precambrian mineralized exoskeletons. Science, 257:367369.Google Scholar
Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., Steele, A., and Grassineau, N. V. 2002. Questioning the evidence for Earth's oldest fossils. Nature, 416:7681.Google Scholar
Brocier, C., and Philippe, H. 2002. A non-hyperthermophilic ancestor for Bacteria. Nature, 417:244.Google Scholar
Brock, J. J., Logan, G. A., Buick, R., and Summons, R. E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285:10331036.Google Scholar
Buss, L. W., and Seilacher, A. 1994. The phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology, 20:14.Google Scholar
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology, 23:247262.Google Scholar
Butterfield, N. J. 2001. Ecology and evolution of Cambrian plankton, p. 200216. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Buzas, M. A., Collins, L. S., and Culver, S. J. 2002. Latitudinal difference in biodiversity caused by higher tropical rate of increase. Proceedings of National Academy of Sciences, USA, 99:78417843.Google Scholar
Carre, D., Carre, C., and Mills, C. E. 1989. Novel cnidocysts of narcomedusae and a medusivorous ctenophore and confirmation of kleptocnidism. Tissue and Cell, 21:723734.CrossRefGoogle Scholar
Casey, R. E. 1993. Radiolaria, p. 249284. In Lipps, J. H. (ed.), Fossil Prokaryotes and Protists. Blackwell Scientific Publications, Boston.Google Scholar
Christaki, U., Giannakourou, A., Van Wambeke, F., and Gregori, G. 2001. Nanoflagellate predation on auto- and heterotrophic picoplankton in the oligotrophic Mediterranean Sea. Journal of Plankton Research, 23:12971310.Google Scholar
Chyba, C. F., Thomas, P. J., Brookshaw, L., and Sagan, C. 1990. Cometary delivery of organic molecules to the early Earth. Science, 249:366373.CrossRefGoogle Scholar
Clapton, M. E., and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.Google Scholar
Collins, A. G., Lipps, J. H., and Valentine, J. W. 2000. Modern mucociliary creeping trails and the body plans of Neoproterozoic trace-makers. Paleobiology, 26:4755.2.0.CO;2>CrossRefGoogle Scholar
Cowen, R. 1983. Algal symbiosis and its recognition in he fossil record, p. 431479. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Crame, J. A. 2002. Evolution of taxonomic diversity gradients in the marine realm: a comparison of Late Jurassic and Recent bivalve faunas. Paleobiology, 28:184208.Google Scholar
Crimes, T. P. 1992. The record of trace fossils across the Proterozoic-Cambrian boundary, p. 177202. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Publishers, New York.Google Scholar
Culver, S. J. 1993. Foraminifera, p. 203247. In Lipps, J. H. (ed.), Fossil Prokaryotes and Protists. Blackwell Scientific Publications, Boston.Google Scholar
Culver, S. J. 1994. Early Cambrian foraminifera from the southwestern Taoudeni Basin, West Africa. Journal of Foraminiferal Research, 24:191202.Google Scholar
Culver, S. J. In press. Benthic foraminifera across the Cretaceous-Tertiary (K-T) boundary—a review. Marine Micropaleontology.Google Scholar
Culver, S. J., and Lipps, J. H. In press. Predation on and by foraminifera. In Kowalewski, M. and Kelley, P. H. (eds.), Predation in the Fossil Record. Kluwer Publishing Co. Google Scholar
Dewel, R. A., Dewel, W. C., and McKinney, F. K. 2001. Diversification of the Metazoa: ediacarans, colonies, and the origin of eumetazoan complexity by nested modularity. Historical Biology, 15:93118.Google Scholar
d'Hondt, S. 1998. Isotopic proxies for ecological collapse and recovery from mass extinctions. The Paleontological Society Papers, 4:179211.Google Scholar
Dong, X. P., Knoll, A. H., and Lipps, J. H. 1997. Late Cambrian Radiolaria from Hunan, China. Journal of Paleontology, 71:753758.Google Scholar
Dzik, J., and Ivantsov, A. Y. 2002. Internal anatomy of a new Precambrian dickinsoniid dipleurozoan from northern Russia. Neues Jahrbuch fur Palaontologie Abhandlungen. In press.CrossRefGoogle Scholar
Erwin, D. H. 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York, 327 p.Google Scholar
Erwin, D. H. 1996. Understanding biotic recoveries: Extinction, survival, and preservation during the end-Permian mass extinction, p. 398418. In Jablonski, D., Erwin, D. H., and Lipps, J. H. (eds.), Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Erskian, M. G., and Lipps, J. H. 1987. Population dynamics of the foraminiferan Glabratella ornatissima (Cushman) in northern California (USA). Journal of Foraminiferal Research, 17:240256.Google Scholar
Falkowski, P. G., Barber, R. T., and Smetacek, V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281:200206.Google Scholar
Fautin, D. G., and Fitt, W. K. 1991. A jellyfish-eating sea anemone (Cnidaria, Actinaria) from Palau: Entacmaea medusivora sp. nov. Hydrobiologia, 216/217:453461.CrossRefGoogle Scholar
Fedo, C. M., and Whitehouse, M. J. 2002. Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth's earliest life. Science, 296:14481452.Google Scholar
Fedonkin, M. A. 1992. Vendian faunas and the early evolution of Metazoa, p. 87129. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Publishers, New York.CrossRefGoogle Scholar
Fedonkin, M. A. 1994. Vendian body fossils and trace fossils, p. 370388. In Bengtson, S. (ed.), Early Life on Earth; 84th Nobel Symposium, Karlskoga, Sweden, May 16, 1992. Columbia University Press, New York.Google Scholar
Fedonkin, M. A., and Runnegar, B. N. 1992. Proterozoic metazoan trace fossils, p. 389395. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Fedonkin, M. A., and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature, 388:868871.Google Scholar
Gale, A. S. 2000. The Cretaceous world, p. 419. In Culver, S. J. and Rawson, P. F. (eds.), Biotic Response to Global Change: The Last 145 Million Years. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gehling, J. G. 1988. A cnidarian of actinian-grade from the Ediacaran Pound Subgroup, South Australia. Alcheringa, 12:299314.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.Google Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life: A Biohistorical Study. Cambridge University Press, Cambridge, 244 p.Google Scholar
Graf, G. 1989. Benthic-pelagic coupling in a deep-sea benthic community. Nature, 341:437439.CrossRefGoogle Scholar
Gu, X. 1997. The age of the common ancestor of eukaryotes and prokaryotes: statistical inferences. Molecular Biology and Evolution, 14:861866.Google Scholar
Harland, W. B. 1964. Critical evidence for a great infra-Cambrian glaciation. Geologische Rundschau, 54:4561.CrossRefGoogle Scholar
Hedges, B., Chen, H., Kumar, S., Wang, D. Y-C., Thompson, A. S., and Watanabe, H. 2001. A genomic timescale for the origin of eukaryotes. BMC Evolutionary Biology 2001, 1:4. (www.biomedcentral.com/1471-2148/1/4)Google Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P. 1998. A Neoproterozoic snowball earth. Science, 281:13421346.Google Scholar
Ivantsov, A. Y., and Fedonkin, M. A. 2001. Trails of active locomotion: final proof of animal nature of the Ediacara organisms, p. 133137. In Podobina, V. M. (ed.), Evolution of Life on Earth. NTL, Tomsk [in Russian].Google Scholar
Javaux, E. J., Knoll, A. H., and Walter, M. R. 2001. Morphological and ecological complexity in early eukaryotic ecosystems. Nature, 412:6669.CrossRefGoogle ScholarPubMed
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.Google Scholar
Katz, L. A. 1999. The tangled web: gene genealogies and the origin of eukaryotes. American Naturalist, 154(Supplement):S137S145.Google Scholar
Kauffman, E. G., and Johnson, C. C. 1988. The morphological and ecological evolution of Middle and Upper Cretaceous reef-building rudistids. Palaios, 3:194216.Google Scholar
Kiorboe, T. 1993. Turbulence, phytoplankton cell size and the structure of pelagic food webs. Advances in Marine Biology, 29:172.Google Scholar
Kirschvink, J. L. 1992. Late Proterozoic low-latitude global glaciation: The Snowball Earth, p. 5152. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., Beukes, N. J., Gutzmer, J., Maepa, L. N., and Steinberger, R. E. 2000. Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences, USA, 97:14001405.CrossRefGoogle ScholarPubMed
Knoll, A. H. 1994. Proterozoic and Early Cambrian protists: Evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences, USA, 91:67436750.Google Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284:21292137.Google Scholar
Knoll, A. H., and Lipps, J. H. 1993. Evolutionary history of prokaryotes and protists, p. 1929. In Lipps, J. H. (ed.), Fossil prokaryotes and protists. Blackwell Scientific Publications, Boston.Google Scholar
Linke, P., and Lutze, G. F. 1993. Microhabitat preferences of benthic foraminifera—a static concept or a dynamic adaptation to optimize food acquisition? Marine Micropaleontology, 20:215234.Google Scholar
Lipps, J. H. 1981. What, if anything, is micropaleontology? Paleobiology, 7:167199.Google Scholar
Lipps, J. H. 1983. Biotic interactions in benthic foraminifera, p. 331376. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Lipps, J. H. 1985. Extinction dynamics in pelagic ecosystems, p. 87104. In Elliott, D. K. (ed.), Dynamics of Extinction. John Wiley & Sons, New York.Google Scholar
Lipps, J. H. 1993. Introduction to fossil prokaryotes and protists, p. 110. In Lipps, J. H. (ed.), Fossil Prokaryotes and Protists. Blackwell Scientific Publishers, Boston.Google Scholar
Lipps, J. H., and Rozanov, A. Yu. 1996. The Late Precambrian–Cambrian agglutinated fossil Platysolenites. Paleontological Journal, 30:679687.Google Scholar
Lipps, J. H., and Valentine, J. W. 1970. The role of foraminifera in the trophic structure of marine communities. Lethaia, 3:279286.Google Scholar
Lipps, J. H., Bengtson, S., and Farmer, J. D. 1992. The Precambrian-Cambrian transition, p. 453457. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Lowe, D. R. 1992. Major events in the geological development of the Precambrian Earth, p. 6775. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Madin, L. P. 1988. Feeding behavior of tentaculate predators: in situ observations and a conceptual model. Bulletin of Marine Science, 43:413429.Google Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science, 288:841845.Google Scholar
McMenamin, M. A. S. 1986. The garden of Ediacara. Palaios, 1:178182.Google Scholar
Mills, C. E. 1993. Natural mortality in NE Pacific coastal hydromedusae: grazing predation, wound healing and senescence. Bulletin of Marine Science, 53:194203.Google Scholar
Mills, C. E. 1995. Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES Journal of Marine Science, 52:575581.Google Scholar
Mojzsis, S. J., Harrison, T. M., and Pidgeon, R. T. 2001. Oxygen-isotopic evidence from ancient zircons for liquid water at the Earth's surface 4,300 million years ago. Nature, 409:178181.Google Scholar
Moldowan, J. M., and Talyzina, N. M. 1998. Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian. Science, 281:11681170.CrossRefGoogle ScholarPubMed
Monastersky, R. 1998. The rise of life on Earth: Life grows up. National Geographic Magazine, 193:100115.Google Scholar
Narbonne, G. M. 1998. The Ediacara biota: A terminal Neoproterozoic experiment in the evolution of life. GSA Today, 8:16.Google Scholar
Nisbet, E. G., and Sleep, N. H. 2001. The habitat and nature of early life. Nature, 409:10831091.Google Scholar
Nybakken, J. W. 2001. Marine Biology, 5th ed. Benjamin Cummings, San Francisco, 516 p.Google Scholar
Osinga, R., Armstrong, E., Burgess, J. G., Hoffmann, F., Reitner, J., and Schumann-Kindel, G. 2001. Sponge-microbe associations and their importance for sponge bioprocess engineering. Hydrobiologia 1, 461:5562.Google Scholar
Patterson, D. J. 1999. The diversity of eukaryotes. American Naturalist, 154:S96S124.Google Scholar
Pickering, K. T. 2000. The Cenozoic world, p. 2034. In Culver, S. J. and Rawson, P. F. (eds.), Biotic Response to Global Change: The Last 145 Million Years. Cambridge University Press, Cambridge.Google Scholar
Pomeroy, L. R. 1974. The ocean's food web: A changing paradigm. Bioscience, 24:499504.CrossRefGoogle Scholar
Rasmussen, B., Bengtson, S., Fletcher, I. R., and McNaughton, N. J. 2002. Discoidal impressions and trace-like fossils more than 1200 million years old. Science, 296:11121115.Google Scholar
Retallack, G. J. 1994. Were the Ediacaran fossils lichens? Paleobiology, 20:523544.Google Scholar
Reysenbach, A.-L., and Shock, E. 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science, 296:10771082.CrossRefGoogle ScholarPubMed
Riemann, L., Steward, G. F., and Azam, F. 2000. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Applied and Environmental Microbiology, 66:578587.Google Scholar
Rosing, M. T. 1999. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science, 283:674676.Google Scholar
Ross, C. A. 1970. Development of fusulinid (Foraminiferida) faunal realms. Journal of Paleontology, 41:13411354.Google Scholar
Rowland, S. M., and Shapiro, R. S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. SEPM Special Publication, 72:95129.Google Scholar
Runnegar, B. N. 1992a. Proterozoic fossils of soft-bodied metazoans (Ediacara faunas), p. 9991007. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Runnegar, B. N. 1992b. Proterozoic metazoan trace fossils, p. 10091015. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Runnegar, B. N. 1992c. Evolution of the earliest animals, p. 6593. In Schopf, J. W. (ed.), Major Events in the History of Life. Jones and Bartlett Publishers, Boston.Google Scholar
Schidlowski, M. 2001. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Research, 106:117134.Google Scholar
Schmiedl, G., de Bovee, F., Buscail, R., Charriere, B., Hemleben, C., Medernach, L., and Picon, P. 2000. Trophic control of benthic foraminiferal abundance and microhabitat in the bathyal Gulf of Lions, western Mediterranean Sea. Marine Micropaleontology, 40:167188.Google Scholar
Schopf, J. W. 1992a. Paleobiology of the Archean, p. 2539. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Schopf, J. W. 1992b. Proterozoic prokaryotes: Affinities, geologic distribution, and evolutionary trends, p. 195218. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge University Press, Cambridge.Google Scholar
Schopf, J. W. 1993. Microfossils of the early Archean Apex Chert—new evidence of the antiquity of life. Science, 260:640646.Google Scholar
Schopf, J. W., and Packer, B. M. 1987. Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science, 237:7073.Google Scholar
Seilacher, A. 1989. Vendozoa: Organismic construction in the Proterozoic biosphere. Lethaia, 22:229240.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.Google Scholar
Sergeev, V. N., Knoll, A. H., and Petrov, P. Yu. 1997. Paleobiology of the Mesoproterozoic–Neoproterozoic transition: the Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia. Precambrian Research, 85:201239.CrossRefGoogle ScholarPubMed
Sheehan, P. M. 2001. The late Ordovician mass extinction. Annual Reviews of Earth and Planetary Sciences, 29:331364.Google Scholar
Shinada, A., Ikeda, T., Ban, S., and Tsuda, A. 2001. Seasonal dynamics of planktonic food chain in the Oyashio region, western subarctic Pacific. Journal of Plankton Research, 23:12371247.Google Scholar
Simonson, B. M., and Carney, K. E. 1999. Roll-up structures: evidence of in-situ microbial mats in late Archean deep shelf environments. Palaios, 14:1324.Google Scholar
Stanley, G. D. Jr. 1988. The history of early Mesozoic reef communities: a three-step process. Palaios, 3:170183.Google Scholar
Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A. 1999. 2-methylhopanoids as biomarkers for cyanobacteria oxygenic photosynthesis. Nature, 400:554557.Google Scholar
Tappan, H. 1993. Tintinnids, p. 285303. In Lipps, J. H. (ed.), Fossil Prokaryotes and Protists. Blackwell Scientific Publications, Boston.Google Scholar
Torsvik, V., Ovreas, L., and Thingstad, T. F. 2002. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science, 296:10641066.Google Scholar
Valentine, J. W. 2002. Prelude to the Cambrian explosion. Annual Review of Earth and Planetary Sciences, 30:285306.Google Scholar
Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development, 126:851859.Google Scholar
Valentine, J. W., Awramik, S. M., Signor, P. W., and Sadler, P. M. 1991. The biological explosion at the Precambrian-Cambrian boundary. Evolutionary Biology, 25:279355.Google Scholar
Vidal, G., and Moczydlowska-Vidal, M. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology, 23:230246.Google Scholar
Waggoner, B. M. 1995. Ediacaran lichens—a critique. Paleobiology, 21:393397.Google Scholar
Won, M.-Z., and Below, R. 1999. Cambrian Radiolaria from the Georgina Basin, Queensland, Australia. Micropaleontology, 45:325363.Google Scholar
Wood, R. A., Grotzinger, J. P., and Dickson, J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science, 296:23832386.Google Scholar
Zhuravlev, A. Y. 1993. Were Ediacaran Vendobionta multicellulars? Neues Jahrbuch fur Palaontologie Abhandlungen, 190:299314.Google Scholar