No CrossRef data available.
Article contents
Finite model reasoning over existential rules*
Published online by Cambridge University Press: 24 August 2017
Abstract
Ontology-based query answering asks whether a Boolean conjunctive query is satisfied by all models of a logical theory consisting of a relational database paired with an ontology. The introduction of existential rules (i.e., Datalog rules extended with existential quantifiers in rule heads) as a means to specify the ontology gave birth to Datalog+/-, a framework that has received increasing attention in the last decade, with focus also on decidability and finite controllability to support effective reasoning. Five basic decidable fragments have been singled out: linear, weakly acyclic, guarded, sticky, and shy. Moreover, for all these fragments, except shy, the important property of finite controllability has been proved, ensuring that a query is satisfied by all models of the theory iff it is satisfied by all its finite models. In this paper, we complete the picture by demonstrating that finite controllability of ontology-based query answering holds also for shy ontologies, and it therefore applies to all basic decidable Datalog+/- classes. To make the demonstration, we devise a general technique to facilitate the process of (dis)proving finite controllability of an arbitrary ontological fragment.
- Type
- Regular Papers
- Information
- Theory and Practice of Logic Programming , Volume 17 , Special Issue 5-6: 33rd International Conference on Logic Programming , September 2017 , pp. 726 - 743
- Copyright
- Copyright © Cambridge University Press 2017
Footnotes
The paper has been partially supported by the Italian Ministry for Economic Development (MISE) under project “PIUCultura – Paradigmi Innovativi per l'Utilizzo della Cultura” (n. F/020016/01-02/X27), and under project “Smarter Solutions in the Big Data World (S2BDW)” (n. F/050389/01-03/X32) funded within the call “HORIZON2020” PON I&C 2014-2020.