Article contents
Predicate logic as a modeling language: modeling and solving some machine learning and data mining problems with IDP3
Published online by Cambridge University Press: 14 May 2014
Abstract
This paper provides a gentle introduction to problem-solving with the IDP3 system. The core of IDP3 is a finite model generator that supports first-order logic enriched with types, inductive definitions, aggregates and partial functions. It offers its users a modeling language that is a slight extension of predicate logic and allows them to solve a wide range of search problems. Apart from a small introductory example, applications are selected from problems that arose within machine learning and data mining research. These research areas have recently shown a strong interest in declarative modeling and constraint-solving as opposed to algorithmic approaches. The paper illustrates that the IDP3 system can be a valuable tool for researchers with such an interest. The first problem is in the domain of stemmatology, a domain of philology concerned with the relationship between surviving variant versions of text. The second problem is about a somewhat related problem within biology where phylogenetic trees are used to represent the evolution of species. The third and final problem concerns the classical problem of learning a minimal automaton consistent with a given set of strings. For this last problem, we show that the performance of our solution comes very close to that of the state-of-the art solution. For each of these applications, we analyze the problem, illustrate the development of a logic-based model and explore how alternatives can affect the performance.
Keywords
- Type
- Regular Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2014
References
- 21
- Cited by