Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T09:19:40.606Z Has data issue: false hasContentIssue false

Actuarial Note on the Calculation of Isolated (Makeham) Joint Annuity Values

Published online by Cambridge University Press:  03 October 2014

Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Actuarial Note
Copyright
Copyright © Institute and Faculty of Actuaries 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, M. (1912). Note sur la deuxième propriété de la formule de Makeham. Bull. Trimest. Inst. Actuair. Franç., Vol. 22, pp. 197204.Google Scholar
Barten, T. and Schlaeger, F. (1955). Untersuchungenü ber die gegenwärtige und zukünstige Sterblichkeit. (Cologne.)Google Scholar
Belt, H. A.Van Den (1907). Een tafel, met behulp waarvan men voor een willekeurig procent en voor een willekeurige sterftetafel, afgerond volgens de formule van Makeham, verschillende vormen van renten en koopsommen van verzekeringen kan berekenen. Arch. Verzek.-W etens.a anverw. vakken, Vol. 9, pp. 5169.Google Scholar
Blaschke, E. (1903). Uber eine Anwendung des Sterbegesetzes von Gompertz–Makeham. Mitt. Verbandesö sterr. ungar. Versich.–techr., Vol. 9, pp. 320.Google Scholar
Dubois, P. (1927). Note sur le changement des constantes s, g, c dans les annuités viagères calculées avec la loi de Makeham. Bull. Trimest. Inst. Actuair. Franç., Vol. 38, pp. 141148.Google Scholar
Fletcher, J. B. (1944). Actuarial note on Chatten and Wickens paper “Makeham's Law of Mortality and its a applicability to modern mortality tables.Trans. Actuar. Soc. Australasia, Vol. 4. pp. 186190.Google Scholar
Franckx, E. (1939). La notion de “tête arbitraire” et ses application, viagères. Bull. Ass. Roy. Actuair. Belges, Vol. 46, pp. 930.Google Scholar
Gram, J. P. (1904). Om Makehams Dodelighedsformel og dens Anvendelse paa ikke normale Liv. Aktuaren, Vol. 1, pp. 5790.Google Scholar
Jorgensen, N . R. (1913). Grundzüge einer Theorie der Lebensversicherung. (Jena.)Google Scholar
Kelley, T. L. (1948). The Kelley Statistical Tables. (Cambridge, Mass.)Google Scholar
King, A. E. (1931). Note on the relation between mortality tables which have been graduated by Makeham's law. T.F.A., Vol. 13, pp. 276279.Google Scholar
Lefrancq, E. (1906). Evaluation directe des prix de rentes viagères sans l'aide de tables de commutation. Bull. Ass. Roy. Actuair. Belges, Vol. 10, pp. 77112.Google Scholar
Makeham, W. M. (1873). On the integral of Gompertz's function for expressing the values of sums depending upon the contingency of life. J.I.A., Vol. 17, pp. 305327 and pp. 445–446.Google Scholar
Mcclintock, E. (1874). On the computation of annuities on Mr. Makeham's hypothesis. J.I.A., Vol. 18, pp. 242247.Google Scholar
Pagurova, V. I. (1961). Tables of the Exponential Integral. (Pergamon Press, Oxford.)Google Scholar
Pearson, E. S. and Hartley, H. O. (1966). Biometrika Tables for Statisticians, Vol. 1. (Cambridge.)Google Scholar
Pearson, K. (1934). Tables of the Incomplete I Function. (Cambridge.)Google Scholar
Rushton, S. (1954). On the confluent hypergeometric function M(α, γ, x ). Sankhyā Vol. 13, pp. 369376.Google Scholar
Smid, L. J. (1938). Benaderde berekening van lijfrenten, toegepast op generatietafels. Verzekeringes–Arch., Vol. 19, pp. 6775.Google Scholar
Thalmann, W. (1931). Zahlenwerte der Prymschen Funktion zur Berechnung von Rentenbarwerten. Mitt. Ver. Schweiz. Versich.–Mathr., Vol. 26, pp. 173201.Google Scholar
Wegmüller, W. et al. (1962). Tables de mortalité de la population suisse 1931–41 et 1939–44. (Bureau fédéral de statistique, Berne.)Google Scholar
Whitney, A. W. (1912). A theory of sub–standard lives. Trans. Actuar. Soc. Amer., Vol. 13, pp. 282299.Google Scholar