Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T09:32:35.817Z Has data issue: false hasContentIssue false

Characterization of guanylate cyclase in squid photoreceptors

Published online by Cambridge University Press:  02 June 2009

Phyllis R. Robinson
Affiliation:
Department of Biology, Brandeis University, Waltham
Richard H. Cote*
Affiliation:
Department of Biochemistry, University of New Hampshire, Durham
*
Rick Cote, Department of Biochemistry, University of New Hampshire, Durham, NH 03824–3544.

Abstract

Light causes a rapid, 1.7-fold increase in cyclic GMP concentration in intact squid retinas (Johnson et al. (1986)). To determine whether light-induced changes in cyclic GMP concentration result from activation of guanylate cyclase, we have studied the regulation of guanylate cyclase activity in squid (Loligo pealei) photoreceptors. The enzyme is membrane-associated and activity is enhanced by the detergents Triton X-100 or digitonin. The enzyme requires divalent cations, Mn2+ being preferred over Mg2+. The dependence of enzyme activity on the MnGTP concentration deviates from simple Michaelis-Menten kinetics. Under conditions where a light-induced binding of GTP to the guanine nucleotide regulatory protein can be observed, no light-induced change in guanylate cyclase could be detected.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartfai, T. (1979). Preparation of metal-chelate complexes and the design of steady-state experiments involving metal nucleotide complexes. Advances in Cyclic Nucleotide Research 10, 219242.Google ScholarPubMed
Bolsover, S.R. & Brown, J.E. (1982). Injection of guanosine and adenosine nucleotides into Limulus ventral photoreceptor cells. Journal of Physiology (London) 332, 325342.CrossRefGoogle ScholarPubMed
Bradham, L.S. & Cheung, W.Y. (1982). Nucleotide cyclases. Progress in Nucleic Acid Research and Molecular Biology 27, 189231.CrossRefGoogle ScholarPubMed
Caldwell, P.C. (1970). In Calcium and Cellular Function, ed. Cuthbert, A.W., pp. 1116. London: St. Martin's.Google Scholar
Fein, A. (1986). Blockade of visual excitation and adaptation in Limulus photoreceptors by GDPβS. Science 232, 15431545.CrossRefGoogle ScholarPubMed
Fleischman, D. & Denisevich, M. (1979). Guanylate cyclase of isolated bovine retinal rod axonemes. Biochemistry 18, 50605066.CrossRefGoogle ScholarPubMed
Fung, B.K.-K. & Stryer, L. (1980). Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proceedings of the National Academy of Sciences of the U.S.A. 77, 25002504.Google Scholar
Garbers, D.L., Hardman, J.F. & Rudolph, F.B. (1974). Kinetic analysis of sea urchin sperm guanylate cyclase. Biochemistry 13, 41664171.CrossRefGoogle Scholar
Garbers, D.L. & Murad, F. (1979). Guanylate-cyclase assay methods. Advances in Cyclic Nucleotide Research 10, 5767.Google Scholar
Goldberg, N.D., Ames, A. III, Gander, J.E. & Walseth, T.F. (1983). Magnitude of increase in retinal cGMP metabolic flux determined by 18O incorporation into nucleotide a-phosphoryls corresponds with intensity of photic stimulation. Journal of Biological Chemistry 258, 92139219.Google Scholar
Goridis, C., Virmaux, N., Urban, P.F. & Mandel, P. (1973). Guanyl cyclase in a mammalian photoreceptor. FEBS Letters 30, 163166.CrossRefGoogle Scholar
Hagins, F.M. (1973). Purification and partial characterization of the protein component of squid rhodopsin. Journal of Biological Chemistry 248, 32983304.CrossRefGoogle ScholarPubMed
Hara, T. & Hara, R. (1967). Rhodopsin and retinochrome in the squid retina. Nature 214, 572575.CrossRefGoogle ScholarPubMed
Johnson, E.C., Robinson, P.R. & Lisman, J.E. (1986). Cyclic GMP is involved in the excitation of invertebrate photoreceptors. Nature 324, 468470.CrossRefGoogle ScholarPubMed
Kimura, H. & Murad, F. (1974). Evidence for two different forms of guanylate cyclase in rat heart. Journal of Biological Chemistry 249, 69106916.CrossRefGoogle ScholarPubMed
Kito, Y., Seki, T. & Hagins, F.M. (1982). Isolation and purification of squid rhabdoms. Methods in Enzymology 81, 4348.CrossRefGoogle ScholarPubMed
Koch, K.-W. & Stryer, L. (1988). Regulation of bovine rod outer segment guanylate cyclase by Ca2+. Nature 334, 6466.Google Scholar
Krishnan, N., Fletcher, R.T., Chader, G.J. & Krishna, G. (1978). Characterization of guanylate cyclase of rod outer segments of the bovine retina. Biochimica Biophysica Ada 523, 506515.Google Scholar
Mittal, C.K. & Murad, F. (1982). Guanylate cyclase: regulation of cyclic GMP metabolism. Handbook of Experimental Pharmacology 58, 225260.CrossRefGoogle Scholar
Nashima, K., Mitsudo, M. & Kito, Y. (1978). Studies on cephalopod rhodopsin-fatty acid esters of sucrose as effective detergents. Biochimica Biophysica Acta 536, 7887.CrossRefGoogle ScholarPubMed
Pannbacker, R.G. (1973). Control of guanylate cyclase in rod outer segments. Science 182, 11381140.Google Scholar
Payne, R. (1986). Phototransduction by microvillar photoreceptors of invertebrates: mediation of a visual cascade by inositol trisphosphate. Photobiochemistry and Photobiophysics 13, 373397.Google Scholar
Pepe, I.M., Boero, A., Vergani, L., Panfoli, I. & Cugnoli, C. (1986 a). Effect of light and calcium on cyclic GMP synthesis in rod outer segments of toad retina. Biochimica Biophysica Acta 889, 271276.CrossRefGoogle ScholarPubMed
Pepe, I.M., Panfoli, I. & Cugnoli, C. (1986 b). Guanylate cyclase in rod outer segment of the toad retina. FEBS Letters 203, 7376.CrossRefGoogle ScholarPubMed
Robinson, P.R., Radeke, M.J., Cote, R.H. & Bownds, M.D. (1986). cGMP influences guanine nucleotide binding to frog photoreceptor G-protein. Journal of Biological Chemistry 261, 313318.Google Scholar
Saibil, H.R. (1984). A light-stimulated increase of cyclic GMP in squid photoreceptors. FEBS Letters 168, 213216.Google Scholar
Saibil, H.R. & Michel-Villaz, M. (1984). Cross reaction between rhodopsin and GTP-binding protein in bovine and squid photoreceptors. Proceedings of the National Academy of Sciences of the U.S.A. 81, 51115115.CrossRefGoogle Scholar
Smith, P.K., Krohn, R.K., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J. & Klenk, D.C. (1985). Measurement of protein using bicinchonic acid. Analytical Biochemistry 150, 7685.Google Scholar
Stryer, L. (1986). Cyclic GMP cascade of vision. Annual Review of Neuroscience 9, 87119.Google Scholar
Troyer, E.W., Hall, I.A. & Ferendelli, J.A. (1978). Guanylate cyclases in CNS: enzymatic characteristics of soluble and paniculate enzymes from mouse cerebellum and retina. Journal of Neurochemistry 31, 825833.Google Scholar
Tsuda, M., Tsuda, T., Terayama, Y., Fukada, Y., Akino, T., Yamanaka, G., Stryer, L., Katada, T., Ui, M. & Ebrey, T. (1986). Kinship of cephalopod photoreceptor G-protein with vertebrate transducin. FEBS Letters 198, 510.Google Scholar
Vandenberg, C.A. & Montal, M. (1984). Light-regulated biochemical events in invertebrate photoreceptors. Biochemistry 23, 23392347.Google Scholar
Waldman, S.A. & Murad, F. (1987). Cyclic GMP synthesis and function. Pharmacological Review 39, 163196.Google ScholarPubMed
Yoshikawa, K., Nisramura, C. & Kuriyama, K. (1982). Characterization of guanylate cyclase in frog retina using nitrosoguanidine and superoxide dismutase. Neurochemistry International 4, 129133.CrossRefGoogle ScholarPubMed