Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T05:01:59.542Z Has data issue: false hasContentIssue false

The chromatic input to global motion perception

Published online by Cambridge University Press:  18 November 2003

ALEXA I. RUPPERTSBERG
Affiliation:
Eleanor Rathbone Building, Department of Psychology, University of Liverpool, Liverpool, L69 7ZA, UK
SOPHIE M. WUERGER
Affiliation:
Eleanor Rathbone Building, Department of Psychology, University of Liverpool, Liverpool, L69 7ZA, UK
MARCO BERTAMINI
Affiliation:
Eleanor Rathbone Building, Department of Psychology, University of Liverpool, Liverpool, L69 7ZA, UK

Abstract

For over 30 years there has been a controversy over whether color-defined motion can be perceived by the human visual system. Some results suggest that there is no chromatic motion mechanism at all, whereas others do find evidence for a purely chromatic motion mechanism. Here we examine the chromatic input to global motion processing for a range of color directions in the photopic luminance range. We measure contrast thresholds for global motion identification and simple detection using sparse random-dot kinematograms. The results show a discrepancy between the two chromatic axes: whereas it is possible for observers to perform the global motion task for stimuli modulated along the red–green axis, we could not assess the contrast threshold required for stimuli modulated along the yellowish-violet axis. The contrast required for detection for both axes, however, are well below the contrasts required for global motion identification. We conclude that there is a significant red–green input to global motion processing providing further evidence for the involvement of the parvocellular pathway. The lack of S-cone input to global motion processing suggests that the koniocellular pathway mediates the detection but not the processing of complex motion for our parameter range.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, S.J., Drasdo, N., & Thompson, C.M. (1995). Parvocellular neurons limit motion acuity in human peripheral vision. Proceedings of the Royal Society B (London) 261(1360), 129138.Google Scholar
Anderson, R.S., Zlatkova, M.B., & Demirel, S. (2002). What limits detection and resolution of short-wavelength sinusoidal gratings across the retina? Vision Research 42, 981990.Google Scholar
Baker, C.L., Jr., Boulton, J.C., & Mullen, K.T. (1998). A nonlinear chromatic motion mechanism. Vision Research 38(2), 291302.Google Scholar
Barbur, J. & Saunders, J.E. (1985). Displacement thresholds for motion detection under conditions of chromatic adaptation. Ophthalmic and Physiological Optics 5, 513.Google Scholar
Bilodeau, L. & Faubert, J. (1997). Isoluminance and chromatic motion perception throughout the visual field. Vision Research 37(15), 20732081.Google Scholar
Bilodeau, L. & Faubert, J. (1999). Global motion cues and the chromatic motion system. Journal of the Optical Society of America A 16(1), 15.Google Scholar
Braddick, O.J. (1980). Low-level and high-level processes in apparent motion. Philosophical Transactions of the Royal Society B (London) 290, 137151.Google Scholar
Brainard, D. (1996). Cone contrast and opponent modulation color spaces. In Human Color Vision, ed. Kaiser, P.K. & Boynton, R.M., pp. 563579. Washington, DC: Optical Society of America.
Britten, K.H. (1999). Motion perception: How are moving images segmented? Current Biology 9, R728R730.Google Scholar
Cavanagh, P. & Favreau, O.E. (1985). Colour and luminance share a common motion pathway. Vision Research 25, 15921601.Google Scholar
Cavanagh, P. & Anstis, S. (1991). The contribution of color to motion in normal and color-deficient observers. Vision Research 31, 21092148.Google Scholar
Cavanagh, P., MacLeod, D.I.A., & Anstis, S.M. (1987). Equiluminance: Spatial and temporal factors and the contribution of blue-sensitive cones. Journal of the Optical Society of America, A 4, 14281438.Google Scholar
Croner, L.J. & Albright, T.D. (1997). Image segmentation enhances discrimination of motion in visual noise. Vision Research 37(11), 14151427.Google Scholar
Cropper, S.J. & Derrington, A.M. (1994). Motion of chromatic stimuli: First-order or second-order? Vision Research 34(1), 4958.Google Scholar
Cropper, S.J. & Derrington, A.M. (1996). Rapid colour-specific detection of motion in human vision. Nature 379, 7274.Google Scholar
Curcio, C.A., Allen, K.A., Sloan, K.R., Lerea, C.L., Hurley, J.B., Klock, I.B., & Milam, A.H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. Journal of Comparative Neurology 312, 610624.Google Scholar
Dacey, D.M. (1993). The mosaic of midget ganglion cells in the human retina. Journal of Neuroscience 13(12), 53345355.Google Scholar
Dacey, D.M. & Lee, B.B. (1994). The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.Google Scholar
Derrington, A.M. & Badcock, D.R. (1985). The low-level motion system has both chromatic and luminance inputs. Vision Research 25, 18691878.Google Scholar
Derrington, A.M. & Henning, G.B. (1993). Detecting and discriminating the direction of motion of luminance and colour gratings. Vision Research 33(5/6), 799811.Google Scholar
Derrington, A.M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology 357, 241265.Google Scholar
De Valois, R.L., Cottaris, N.P., Elfar, S.D., Mahon, L.E., & Wilson, J.A. (2000). Some transformations of colour information from lateral geniculate nucleus to striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 97(9), 49975002.Google Scholar
Dougherty, R.F., Press, W.A., & Wandell, B.A. (1999). Perceived speed of colored stimuli. Neuron 24, 893899.Google Scholar
Edwards, M. & Badcock, D.R. (1996). Global-motion perception: Interaction of chromatic and luminance signals. Vision Research 36(16), 24232431.Google Scholar
Eskew, R.T., McLellan, J., & Guilianini, F. (1999). Chromatic detection and discrimination. In Color Vision: From Genes to Perception. ed. Gegenfurtner, K. & Sharpe, L., pp. 345368. Cambridge, UK: Cambridge University Press.
Gegenfurtner, K.R. & Kiper, D. (1992). Contrast detection in luminance and chromatic noise. Journal of the Optical Society of America A 9, 18801888.Google Scholar
Gegenfurtner, K.R. & Hawken, M.J. (1995). Temporal and chromatic properties of motion mechanisms. Vision Research 35(11), 15471563.Google Scholar
Gegenfurtner, K.R. & Hawken, M.J. (1996). Perceived velocity of luminance chromatic and non-Fourier stimuli: Influence of contrast and temporal frequency. Vision Research 36(9), 12811290.Google Scholar
Hawken, M.J., Gegenfurtner, K.R., & Tang, C. (1994). Contrast dependence of colour and luminance motion mechanisms in human vision. Nature 367, 268270.Google Scholar
Judd, D.B. (1951). Report of U.S. Secretariat Committee on Colorimetry and Artificial Daylight. CIE Proceedings Vol. 1, part 7, p. 11, Paris, Bureau Central de la CIE.
Kaiser, P.K. & Boyton, R.M. (1996). Human Color Vision. Optical Society of America, Washington, DC.
Kooi, F.L. & De Valois, K.K. (1992). The role of color in the motion system. Vision Research 32, 657668.Google Scholar
Levinson, E. & Sekuler, R. (1975). The independence of channels in human vision selective for direction of motion. Journal of Physiology (London) 250, 347366.Google Scholar
Levitt, H. (1971). Transformed up–down methods in psychoacoustics. Journal of the Acoustical Society of America 49(2), 467477.Google Scholar
Li, H.-C. & Kingdom, F.A.A. (2001). Segregation by color/luminance does not necessarily facilitate motion discrimination in the presence of motion distractors. Perception and Psychophysics 63, 660675.Google Scholar
Lindsey, D.T. & Teller, D.Y. (1990). Motion at isoluminance: Discrimination/detection ratios for moving isoluminant gratings. Vision Research 30(11), 17511761.Google Scholar
Losada, M.A. & Mullen, K.T. (1995). Color and luminance spatial tuning estimated by noise masking in the absence of off-frequency looking. Journal of the Optical Society of America A 12(2), 250260.Google Scholar
Lu, Z.-L. & Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research 35(19), 26972722.Google Scholar
Lu, Z.-L., Lesmes, L.A., & Sperling, G. (1999). The mechanism of isoluminant chromatic motion. Proceedings of the National Academy of Sciences of the U.S.A. 96, 82898294.Google Scholar
MacLeod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.Google Scholar
Metha, A.B. & Mullen, K.T. (1996). Temporal mechanisms underlying flicker detection and identification for red–green and achromatic stimuli. Journal of the Optical Society of America A 13(10), 19691980.Google Scholar
Metha, A.B. & Mullen, K.T. (1997). Red–green and achromatic temporal filters: A ratio model predicts contrast-dependent speed perception. Journal of the Optical Society of America A 14(5), 984997.Google Scholar
Metha, A.B. & Mullen, K.T. (1998). Failure of direction discrimination at detection threshold for both fast and slow chromatic motion. Journal of the Optical Society of America A 15(12), 29452950.Google Scholar
Metha, A.B. & Lennie, P. (2001). Transmission of spatial information in S-cone pathways. Visual Neuroscience 18(6), 961972.Google Scholar
Metha, A.B., Vingrys, A.J., & Badcock, D.R. (1994). Detection and discrimination of moving stimuli: The effects of color, luminance and eccentricity. Journal of the Optical Society of America A 11(6), 16971709.Google Scholar
Moller, P. & Hurlbert, A. (1997a). Interactions between colour and motion in image segmentation. Current Biology 7, 105111.Google Scholar
Moller, P. & Hurlbert, A. (1997b). Motion edges and regions guide image segmentation by colour. Proceedings of the Royal Society B (London) 264, 15711577.Google Scholar
Moutoussis, K. & Zeki, S. (1997). Functional segregation and temporal hierarchy of the visual perceptive systems. Proceedings of the Royal Society B (London) 264, 18.Google Scholar
Mullen, K.T. (1985). The contrast sensitivity of human colour vision to red–green and yellow–blue chromatic gratings. Journal of Physiology 359, 381400.Google Scholar
Mullen, K.T. (1991). Colour vision as a post-receptoral specialization of the central visual field. Vision Research 31, 119130.Google Scholar
Mullen, K.T. & Baker, C.L. (1985). A motion aftereffect from an isoluminant stimulus. Vision Research 25, 685688.Google Scholar
Mullen, K.T. & Boulton, J.C. (1992a). Absence of smooth motion perception in color vision. Vision Research 32, 483488.Google Scholar
Mullen, K.T. & Boulton, J.C. (1992b). Interactions between colour and luminance contrast in the perception of motion. Ophthalmic and Physiological Optics 12, 201205.Google Scholar
Newsome, W.T. & Pare, E.B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience 8(6), 22012211.Google Scholar
Palmer, J., Mobley, L.A., & Teller, D.Y. (1993). Motion at isoluminance: Discrimination/detection ratios and the summation of luminance and chromatic signals. Journal of the Optical Society of America A 10(6), 13531362.Google Scholar
Rabin, J., Adams, A.J., & Switkes, E. (1992). Perceptual ambiguity and the short wavelength sensitive visual pathway. Vision Research 32(2), 399401.Google Scholar
Ramachandran, V.S. (1987). Interaction between colour and motion in human vision. Nature 328, 645647.Google Scholar
Ramachandran, V.S. & Gregory, R.L. (1978). Does colour provide an input to human motion perception? Nature 275, 5556.Google Scholar
Sankeralli, M.J. & Mullen, K.T. (1997). Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. Journal of the Optic Society of America A 14(10), 26332646.Google Scholar
Seidemann, E., Poirson, A.B., Wandell, B.A., & Newsome, W.T. (1999). Color signals in area MT of the macaque monkey. Neuron 24, 911917.Google Scholar
Snowden, R.J. & Edmunds, R. (1999). Colour and polarity contributions to global motion perception. Vision Research 39(10), 18131822.Google Scholar
Stromeyer, C.F., III, Kronauer, R.E., Ryu, A., Chaparro, A., & Eskew, R.T., Jr. (1995). Contributions of human long-wave and middle-wave cones to motion detection. Journal of Physiology (London) 485, 221243.Google Scholar
Stromeyer, C.F., III, Chaparro, A., Tolias, A.S., & Kronauer, R.E. (1997). Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism. Journal of Physiology 499(Pt 1), 227254.Google Scholar
Swanson, W.H., Pokorny, J., & Smith, V.C. (1987). Effects of temporal frequency on phase-dependent sensitivity to heterochromatic flicker. Journal of the Optical Society of America A 4(12), 22662273.Google Scholar
Tsujimura, S., Shioiri, S., Hirai, Y., & Yaguchi, H. (1999). Selective cone suppression by the L-M- and M-L-cone-opponent mechanisms in the luminance pathway. Journal of the Optical Society of America A 16(6), 12171228.Google Scholar
Tsujimura, S., Shioiri, S., Hirai, Y., & Yaguchi, H. (2000). Technique to investigate the temporal phase shift between L- and M-cone inputs to the luminance mechanism. Journal of the Optical Society of America A 17(5), 846857.Google Scholar
Walsh, J.W.T. (1958). Photometry (3rd edition ed.). London, UK: Constable & Co. Ltd.
Wandell, B.A., Poirson, A.B., Newsome, W.T., Baseler, H.A., Boynton, G.M., Huk, A., Gandhi, S., & Sharpe, L.T. (1999). Color signals in human motion-selective cortex. Neuron 24, 900909.Google Scholar
Watson, A.B., Thompson, P.G., Murphy, B.J., & Nachmias, J. (1980). Summation and discrimination of gratings moving in opposite directions. Vision Research 20, 341347.Google Scholar
Willis, A. & Anderson, S.J. (1998). Separate colour-opponent mechanisms underlie the detection and discrimination of moving chromatic targets. Proceedings of the Royal Society B (London) 265, 24352441.Google Scholar
Willis, A. & Anderson, S.J. (2002). Colour and luminance interactions in the visual perception of motion. Proceedings of the Royal Society B (London) 269(1495), 10111016.Google Scholar
Wuerger, S.M. & Landy, M.S. (1993). Role of chromatic and luminance contrast in inferring structure from motion. Journal of the Optical Society of America A 10(6), 13631372.Google Scholar
Wuerger, S.M., Watson, A.B., & Ahumada, A. (2002). Towards a spatio-chromatic standard observer for detection. Proceedings of the SPIE: Human Vision and Electronic Imaging VII 4662, 159172.Google Scholar
Wyszecki, G. & Stiles, W.S. (2000). Color Science: Concepts and Methods, Quantitative Data and Formulae (2nd edition). New York: John Wiley & Sons.
Yoshizawa, T., Mullen, K.T., & Baker, C.L., Jr. (2000). Absence of a chromatic linear motion mechanism in human vision. Vision Research 40(15), 19932010.Google Scholar
Zaidi, Q. & DeBonet, J.S. (2000). Motion energy versus position tracking: Spatial, temporal, and chromatic parameters. Vision Research 40(26), 36133635.Google Scholar