Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T19:32:42.871Z Has data issue: false hasContentIssue false

Glycine receptor immunoreactivity is localized at amacrine synapses in cat retina

Published online by Cambridge University Press:  02 June 2009

Roberta G. Pourcho
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit
Michael T. Owczarzak
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit

Abstract

Immunocytochemical techniques were used to localize strychnine-sensitive glycine receptors in cat retina. Light microscopy showed staining in processes ramifying throughout the inner plexiform layer and in cell bodies of both amacrine and ganglion cells. At the electron-microscopic level, receptor immunoreactivity was seen to be clustered at sites postsynaptic to amacrine cells. In contrast, bipolar cells were neither presynaptic nor postsynaptic elements at sites of glycine receptor staining. Double-label studies verified the presence of glycine immunoreactivity in amacrine terminals presynaptic to glycine receptors. These findings support a role for glycine as an inhibitory neurotransmitter in amacrine cells.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschuler, R.A., Betz, H., Parakkai, M.H., Reeks, K.A. & Wenthold, R.J. (1986). Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Research 369, 316320.Google Scholar
Aprison, M.H. & Werman, R. (1965). The distribution of glycine in cat spinal cord and roots. Life Sciences 4, 20752083.CrossRefGoogle ScholarPubMed
Betz, H. (1987). Biology and structure of the mammalian glycine receptor. Trends in Neuroscience 10, 113117.CrossRefGoogle Scholar
Betz, H. & Becker, C.-M. (1988). The mammalian glycine receptor: Biology and structure of a neuronal chloride channel protein. Neurochemistry International 13, 137146.Google Scholar
Bolz, J., Thier, P., Voigt, T. & Wassle, H. (1985). Action and localization of glycine and taurine in the cat retina. Journal of Physiology (London) 362, 395413.Google Scholar
Cohen, E. & Sterling, P. (1986). Accumulation of (3H)glycine by cone bipolar cells in the cat retina. Journal of Comparative Neurology 250, 17.Google Scholar
Dacheux, R.F., Frumkes, T.E. & Miller, R.F. (1979). Pathways and polarities of synaptic interactions in the inner retina of the mudpuppy, I: Synaptic blocking studies. Brain Research 161, 112.CrossRefGoogle ScholarPubMed
Ehinger, B., Ottersen, O.P., Storm-Mathisen, J. & Dowling, J.E. (1988). Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proceedings of the National Academy of Sciences of the U.S.A. 85, 83218325.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. & Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Research 84, 293300.Google Scholar
Fletcher, E.J., Beart, P.M. & Lodge, D. (1990). Involvement of glycine in excitatory neurotransmission. In Glycine Neurotransmission, ed. Ottersen, O.P. & Storm-Mathisen, J., pp. 193218. London: John Wiley & Sons Ltd.Google Scholar
Frumkes, T.F., Miller, R.F., Slaughter, M. & Dacheux, R.F. (1981). Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina, III: Amacrine-mediated inhibitory influences on ganglion cell receptive-field organization: A model. Journal of Neurophysiology 45, 783804.Google Scholar
Hendrickson, A.E., Koontz, M.A., Pourcho, R.G., Sarthy, P.V. & Goebel, D.J. (1988). Localization of glycine-containing neurons in Macaca monkey retina. Journal of Comparative Neurology 273, 473478.Google Scholar
Jäger, J. & Wässle, H. (1987). Localization of glycine uptake and receptors in the cat retina. Neuroscience Letters 75, 147151.Google Scholar
Johnson, J.W. & Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529531.Google Scholar
Jojich, L. & Pourcho, R.G. (1990). Comparative distributions of glutamate-, aspartate-, and glycine-like immunoreactivity in the cat retina. Investigative Ophthalmology and Visual Science (Suppl.) 31, 535.Google Scholar
Karschin, A. & Wässle, H. (1990). Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. Journal of Neurophysiology 63, 860876.CrossRefGoogle ScholarPubMed
Kirby, A.W. (1979). The effect of strychnine, bicuculline and picrotoxin on X and Y cells in the cat retina. Journal of General Physiology 74, 7184.Google Scholar
Marc, R.E. (1985). The role of glycine in retinal circuitry. In Retinal Neurotransmitters and Modulators: Models for the Brain, ed. Morgan, W.W., pp. 119158. Boca Raton, Florida: CRC Press.Google Scholar
Miller, R.F. & Dacheux, R.F. (1976). Synaptic organization and ionic basis of ON and OFF channels in mudpuppy retina, II: Chloride-dependent ganglion cell mechanisms. Journal of General Physiology 67, 661678.CrossRefGoogle Scholar
Miller, R.F., Dacheux, R.F. & Frumkes, T.E. (1977). Amacrine cells in Necturus retina: Evidence for independent γ-aminobutyric acid and glycine-releasing neurons. Science 198, 748750.CrossRefGoogle ScholarPubMed
Miller, R.F., Frumkes, T.E., Slaughter, M. & Dacheux, R.F. (1981). Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. I. Receptors, horizontal cells, bipolar cells and G-cells. Journal of Neurophysiology 45, 743763.Google Scholar
Monaghan, D.T. (1990). Glycine modulation of NMDA receptors: Autoradiographic studies. In Glycine Neurotransmission, ed. Ottersen, O.P. & Storm-Mathisen, J., pp. 219237. London: John Wiley & Sons Ltd.Google Scholar
Müller, F., Wässle, H. & Voigt, T. (1988). Pharmacological modulation of the rod pathway in the cat retina. Journal of Neurophysiology 59, 16571672.CrossRefGoogle ScholarPubMed
Naka, K.-I. (1976). Neuronal circuitry in the catfish retina. Investigative Ophthalmology 15, 926935.Google Scholar
Pfeiffer, F., Simler, R., Genningloh, G. & Betz, H. (1984). Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proceedings of the National Academy of Sciences of the U.S.A. 81, 72247227.CrossRefGoogle ScholarPubMed
Pourcho, R.G. (1980). Uptake of [3H]glycine and [3H]GABA by amacrine cells in the cat retina. Brain Research 198, 333346.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1985a). Immunocytochemical demonstration of glycine in retina. Brain Research 348, 339342.Google Scholar
Pourcho, R.G. & Goebel, D.J. (1985b). A combined Golgi and autoradiographic study of [3H]glycine-accumulating amacrine cells in the cat retina. Journal of Comparative Neurology 233, 473480.Google Scholar
Pourcho, R.G. & Goebel, D.J. (1987a). A combined Golgi and autoradiographic study of3H-glycine-accumulating cone bipolar cells in the cat retina. Journal of Neuroscience 7, 11781188.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1987b). Visualization of endogenous glycine in cat retina: An immunocytochemical study with Fab fragments. Journal of Neuroscience 7, 11891197.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1990). Autoradiographic and immunocytochemical studies of glycine-containing neurons in the retina. In Glycine Neurotransmission, ed. Ottersen, O.P. & Storm-Mathisen, J., pp. 356389. London: John Wiley & Sons Ltd.Google Scholar
Pourcho, R.G. & Owczarzak, M.T. (1989). Distribution of GABA immunoreactivity in the cat retina: A light- and electron-microscopic study. Visual Neuroscience 2, 425435.Google Scholar
Pourcho, R.G. & Owczarzak, M.T. (1991). Connectivity of glycine immunoreactive amacrine cells in the cat retina, Journal of Comparative Neurology 307, 549561.CrossRefGoogle ScholarPubMed
Saito, H. (1981). The effects of strychnine and bicuculline on the response of X- and Y-cells of the isolated eye-cup preparation of the cat. Brain Research 212, 243248.CrossRefGoogle ScholarPubMed
Slaughter, M. & Miller, R. (1983). Bipolar cells in the mudpuppy retina use an excitatory amino acid neurotransmitter. Nature 303, 537538.CrossRefGoogle ScholarPubMed
Triller, A., Cluzeaud, F. & Korn, H. (1987). Gamma-aminobutyric acid-containing terminals can be apposed to glycine receptors at central synapses. Journal of Cell Biology 104, 947956.CrossRefGoogle ScholarPubMed
Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. (1985). Distribution of glycine receptors at central synapses: An immunoelectron microscopy study. Journal of Cell Biology 101, 683688.CrossRefGoogle ScholarPubMed
Van Den Pol, A.N. (1988). Silver intensification of colloidal gold or horseradish peroxidase for dual ultrastructural immunocytochemistry. In Molecular Neuroanatomy, ed. Van Leeuwen, F.W., Buus, R.M., Pool, C.W. & Pach, O., pp. 315336. Amsterdam: Elsevier Science Publishers B.V.Google Scholar
Wenthold, R.J., Parakkal, M.K., Oberdorfer, M.D. & Altschuler, R.A. (1988). Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. Journal of Comparative Neurology 276, 423435.Google Scholar