Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T14:51:33.211Z Has data issue: false hasContentIssue false

Measurement of macular pigment optical density and distribution using the steady-state visual evoked potential

Published online by Cambridge University Press:  01 July 2008

ANTHONY G. ROBSON*
Affiliation:
Department of Electrophysiology, Moorfields Eye Hospital, London, UK Institute of Ophthalmology, London, UK
NEIL R.A. PARRY
Affiliation:
Vision Science Centre, Manchester Royal Eye Hospital, Manchester, UK University of Manchester, Manchester, UK
*
*Address correspondence and reprint requests to: Anthony G. Robson, Department of Electrophysiology, Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK. E-mail: anthony.robson@moorfields.nhs.uk

Abstract

The purpose of this study was to specify isoluminance at different retinal eccentricities and to characterize macular pigment optical density (MPOD) and distribution using the steady-state visual evoked potential (VEP). Red–green (R/G) and blue–green (B/G) gratings were generated within two circular stimulus fields (radius = 0.55 or 1.1 deg) and within four annular fields (maximum mean radius = 6.0 deg) on a color monitor. Temporal frequency was 15 Hz. Isoluminance was determined for each stimulus using minimum flicker photometry. Steady-state onset–offset VEPs were recorded to the same annular stimuli as the luminance ratio between adjacent chromatic components was changed from 0.25 to 0.85 in 11 automated steps (0.5 representing photometric isoluminance). Fourier analysis showed that the power of the first harmonic was minimized at the isoluminant ratio specific to each subject. Relative OD was computed by comparing the isoluminant ratio at any location with that for the most eccentric annulus. To compensate for the broadband characteristics of the monitor, OD values were corrected according to minimum flicker measurements made through known concentrations of carotenoid solution. MPOD was additionally measured using minimum motion photometry.

There was high correlation between the isoluminant ratios determined by minimum flicker and VEPs for both R/G and B/G stimulation (r = 0.91, P < 0.005, slope = 1). Calibrated OD values computed from VEP estimates of B/G isoluminance correlated with those derived from minimum flicker (r = 0.96, P < 0.0005, slope = 0.85) and motion photometry (r = 0.94, P < 0.0005, slope = 0.88). OD values derived from B/G VEPs increased toward the fovea and corresponded closely with minimum flicker and minimum motion assessment of MP distribution profiles. The steady-state VEP can be used to determine isoluminance at different retinal eccentricities. MPOD and distribution can be measured by steady-state VEPs to B/G stimuli.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadi, R.V. & Cox, M.J. (1992). The distribution of macular pigment in human albinos. Investigative Ophthalmology and Visual Science 33, 494497.Google ScholarPubMed
Bartlett, H. & Eperjesi, F. (2003). Age-related macular degeneration and nutritional supplementation: A review of randomized controlled trials. Ophthalmic and Physiological Optics 23, 383399.CrossRefGoogle Scholar
Beatty, S., Boulton, M., Henson, D., Koh, H.H. & Murray, I.J. (1999). Macular pigment and age related macular degeneration. British Journal of Ophthalmology 83, 867877.CrossRefGoogle ScholarPubMed
Beatty, S., Murray, I.J., Henson, D.B., Carden, D., Koh, H.H. & Boulton, M.E. (2001). Macular pigment and risk for age-related macular degeneration in subjects from a northern European population. Investigative Ophthalmology and Visual Science 42, 439446.Google ScholarPubMed
Berendschot, T.T., Goldbohm, R.A., Klopping, W.A., van de Kraats, J., van Norel, J. & van Norren, D. (2000). Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Investigative Ophthalmology and Visual Science 41, 33223326.Google ScholarPubMed
Berninger, T.A., Arden, G.B., Hogg, C.R. & Frumkes, T. (1989). Separable evoked retinal and cortical potentials from each major visual pathway: preliminary results. British Journal of Ophthalmology 73, 502511.CrossRefGoogle ScholarPubMed
Bjerre, A., Grigg, J.R., Parry, N.R.A. & Henson, D.B. (2004). Test-retest variability of multifocal visual evoked potential and SITA standard perimetry in glaucoma. Investigative Ophthalmology and Visual Science 45, 40354040.CrossRefGoogle ScholarPubMed
Bland, J.M. & Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1, 307310.CrossRefGoogle ScholarPubMed
Bone, R.A., Landrum, J.T., Guerra, L.H. & Ruiz, C.A. (2003). Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. Journal of Nutrition 133, 992998.CrossRefGoogle ScholarPubMed
Bone, R.A., Landrum, J.T., Mayne, S.T., Gomez, C.M., Tibor, S.E. & Twaroska, E.E. (2001). Macular pigment in donor eyes with and without AMD: A case-control study. Investigative Ophthalmology and Visual Science 42, 235240.Google ScholarPubMed
Brown, A. (1990). Development of visual sensitivity to light and colour vision in human infants: A critical review. Vision Research 30, 11591188.CrossRefGoogle ScholarPubMed
Charman, W.N. (1991). Limits on the visual performance set by eye's optics and the retinal cone mosaic. In Limits of Vision, ed. Kulikowski, J.J., Walsh, V. & Murray, I.J., pp 8196. Basingstoke: Macmillan.Google Scholar
Chen, S., Chang, Y. & Wu, J. (2001). The spatial distribution of macular pigment in humans. Current Eye Research 23, 422434.CrossRefGoogle ScholarPubMed
Davies, N.P. & Morland, A.B. (2004). Macular pigments: their characteristics and putative role. Progress in Retinal and Eye Research 23, 533559.CrossRefGoogle ScholarPubMed
Davis, A.R., Sloper, J.J., Neveu, M.M., Hogg, C.R., Morgan, M.J. & Holder, G.E. (2003). Electrophysiological and psychophysical differences between early- and late-onset strabismic amblyopia. Investigative Ophthalmology and Visual Science 44, 610617.CrossRefGoogle ScholarPubMed
Davis, A.R., Sloper, J.J., Neveu, M.M., Hogg, C.R., Morgan, M.J. & Holder, G.E. (2006). Differential changes of magnocellular and parvocellular visual function in early- and late-onset strabismic amblyopia. Investigative Ophthalmology and Visual Science 47, 48364841.CrossRefGoogle ScholarPubMed
Gomes, B.D., Souza, G.S., Rodrigues, A.R., Saito, C.A., Silveira, L.C. & da Silva Filho, M. (2006). Normal and dichromatic color discrimination measured with transient visual evoked potential. Visual Neuroscience 23, 617627.CrossRefGoogle ScholarPubMed
Ham, W.T., Ruffolo, J.J., Mueller, H.A., Clarke, A.M. & Moon, M.E. (1978). Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Investigative Ophthalmology and Vision Science 17, 10291035.Google ScholarPubMed
Hammond, B.R. Jr, Johnson, E.J., Russell, R.M., Krinsky, N.I., Yeum, K.J., Edwards, R.B. & Snodderly, D.M. (1997 a). Dietary modification of human macular pigment density. Investigative Ophthalmology and Vision Science 37, 17951801.Google Scholar
Hammond, B.R. Jr, Wooten, B.R. & Smollon, B. (2005). Assessment of the validity of in vivo methods of measuring human macular pigment optical density. Optometry and Vision Science 82, 387404.CrossRefGoogle ScholarPubMed
Hammond, B.R., Wooten, B.R. & Snodderly, D.M. (1997 b). Individual variations in the spatial profile of human macular pigment. Journal of the Optical Society of America A 14, 11871196.CrossRefGoogle ScholarPubMed
Handelman, G.J., Snodderly, D.M., Krinsky, N.I., Russett, M.D., Adler, A.J. (1991). Biological control of primate macular pigment. Biochemical and densitometric studies. Investigative Ophthalmology and Visual Science 32, 257267.Google ScholarPubMed
Johnson, E.J., Neuringer, M., Russell, R.M., Schalch, W. & Snodderly, D.M. (2005). Nutritional manipulation of primate retinas, III: Effects of lutein or zeaxanthin supplementation on adipose tissue and retina of xanthophyll-free monkeys. Investigative Ophthalmology and Visual Science 46, 692702.CrossRefGoogle ScholarPubMed
Kaiser, P.K. (1991). Flicker as a function of wavelength and heterochromatic flicker photometry. In Limits of Vision, ed. Kulikowski, J.J., Walsh, V.W. & Murray, I.J.London: Macmillan.Google Scholar
Koh, H.H., Murray, I.J., Nolan, D., Carden, D., Feather, J. & Beatty, S. (2004). Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: a pilot study. Experimental Eye Research 79, 2127.CrossRefGoogle ScholarPubMed
Kulikowski, J.J., McKeefry, D.J. & Robson, A.G. (1997). Colour selective stimulation: An empirical perspective. Spatial Vision 10, 379402.Google ScholarPubMed
Kulikowski, J.J., Robson, A.G. & McKeefry, D.J. (1996). Specificity and selectivity of chromatic visual evoked potentials. Vision Research 36, 33973401.CrossRefGoogle ScholarPubMed
Kulikowski, J.J., Robson, A.G. & Murray, I.J. (2002). Scalp VEPs and intra-cortical responses to chromatic and achromatic stimuli in primates. Documenta Ophthalmologica 105, 243279.CrossRefGoogle ScholarPubMed
Landrum, J.T., Bone, R.A., Joa, H., Kilburn, M.D., Moore, L.L. & Sprague, K.E. (1997). A one year study of the macular pigment: The effect of 140 days of a lutein supplement. Experimental Eye Research 65, 5762.CrossRefGoogle ScholarPubMed
Lawwill, T., Crockett, S. & Currier, G. (1977). Retinal damage secondary to chronic light exposure, thresholds and mechanisms. Documenta Ophthalmologica 44, 379402.CrossRefGoogle ScholarPubMed
Leung, I., Tso, M., Li, W. & Lam, T. (2001). Absorption and tissue distribution of zeaxanthin and lutein in rhesus monkeys after taking Fructus lycii (Gou Qi Zi) extract. Investigative Ophthalmology and Visual Science 42, 466471.Google ScholarPubMed
Liew, S.H., Gilbert, C.E., Spector, T.D., Mellerio, J., Marshall, J., van Kuijk, F.J., Beatty, S., Fitzke, F. & Hammond, C.J. (2005). Heritability of macular pigment: A twin study. Investigative Ophthalmology and Visual Science 46, 44304436.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1987). Psychophysical evidence for separate channels for perception of form, colour, movement and depth. Journal of Neuroscience 7, 34163466.CrossRefGoogle ScholarPubMed
McKeefry, D.J., Murray, I.J. & Kulikowski, J.J. (2001). Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation. Vision Research 41, 245255.CrossRefGoogle ScholarPubMed
McKeefry, D.J., Russell, M.H.A., Murray, I.J. & Kulikowski, J.J. (1996). Amplitude and phase variations of harmonic components in human achromatic and chromatic VEPs. Visual Neuroscience 13, 639653.CrossRefGoogle Scholar
Moreland, J.D. (1982). Spectral sensitivity measured by motion photometry. Documenta Ophthalmologica Proceedings Series 33, 6166.Google Scholar
Moreland, J.D. (2004). Macular pigment assessment by motion photometry. Archives of Biochemistry and Biophysics 430, 143148.CrossRefGoogle ScholarPubMed
Moreland, J.D. & Alexander, E.C. (1997). Effect of macular pigment on colour matching with field sizes in the 1° to 10° range. Documenta Ophthalmologica Proceedings Series 59, 363368.CrossRefGoogle Scholar
Moreland, J.D. & Bhatt, P. (1984). Retinal distribution of retinal pigment. Documenta Opthalmologica Proceedings Series 39, 127132.CrossRefGoogle Scholar
Moreland, J.D. & Kerr, J. (1979). Optimization of a Rayleigh-type equation for the detection of tritanomaly. Vision Research 19, 13691375.CrossRefGoogle ScholarPubMed
Moreland, J.D. & Robson, A.G. (2008). Comparison of foveal macular pigment optical density with computations of the total pigment complement using a validated motion photometry technique. Investigative Ophthalmology and Visual Science 49, ARVO E-abstract 4962.Google Scholar
Moreland, J.D., Robson, A.G. & Kulikowski, J.J. (2001). Macular pigment assessment using a colour monitor. Color Research and Applications 26, S261S263.3.0.CO;2-6>CrossRefGoogle Scholar
Mullen, K.T., Sankeralli, M.J. & Hess, R.F. (1996). Color and luminance vision in human amblyopia: Shifts in isoluminance, contrast sensitivity losses, and positional deficits. Vision Research 36, 645653.CrossRefGoogle ScholarPubMed
Murray, I.J., Parry, N.R.A., Carden, D. & Kulikowski, J.J. (1987). Human visual evoked potentials to chromatic and achromatic gratings. Clinical Vision Sciences 1, 231244.Google Scholar
Neuringer, M., Sandstrom, M.M., Johnson, E.J. & Snodderly, D.M. (2004). Nutritional manipulation of primate retinas, I: Effects of lutein or zeaxanthin supplements on serum and macular pigment in xanthophyll-free rhesus monkeys. Investigative Ophthalmology and Visual Science 45, 32343243.CrossRefGoogle ScholarPubMed
Parry, N.R.A., Kulikowski, J.J., Murray, J.J., Kranda, K. & Ott, H. (1988). Visual evoked potentials and reaction times to chromatic and achromatic stimulation. In Psychopharmacology and Reaction Time, ed. Hindmarch, I., Aufdembrinke, B. & Ott, H., pp. 155176. NY: J. Wiley.Google Scholar
Parry, N.R.A. & Murray, I.J. (1997). Electrophysiological investigations of adult and infant colour vision deficiencies. In John Dalton's Colour Vision Legacy, ed. Dickinson, C.M., Murray, I.J. & Carden, D., pp. 349357. London: Taylor and Francis.Google Scholar
Pease, P.L., Adams, A.J. & Nuccio, E. (1987). Optical density of human macular pigment. Vision Research 27, 705710.CrossRefGoogle ScholarPubMed
Pompe, M.T., Kranjc, B.S. & Brecelj, J. (2006). Visual evoked potentials to red-green stimulation in schoolchildren. Visual Neuroscience 23, 447451.CrossRefGoogle ScholarPubMed
Porciatti, V. & Sartucci, F. (1996). Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119: 723740.CrossRefGoogle ScholarPubMed
Porciatti, V. & Sartucci, F. (1999). Normative data for onset VEPs to red-green and blue-yellow chromatic contrast. Clinical Neurophysiology 110, 772781.CrossRefGoogle ScholarPubMed
Regan, D. (1989). Human Brain Electrophysiology. New York: Elsevier.Google Scholar
Robson, A.G. & Kulikowski, J.J. (1995). Verification of VEPs elicited by gratings containing tritanopic pairs of hues. Journal of Physiology 475, 22P.Google Scholar
Robson, A.G. & Kulikowski, J.J. (1998). Objective specification of tritanopic confusion lines using visual evoked potentials. Vision Research 38, 34993503.CrossRefGoogle ScholarPubMed
Robson, A.G., Harding, G., van Kuijk, F.J., Pauleikhoff, D., Holder, G.E., Bird, A.C., Fitzke, F.W. & Moreland, J.D. (2005). Comparison of fundus autofluorescence and minimum motion measurements of macular pigment distribution profiles derived from identical retinal areas. Perception 34, 10291034.CrossRefGoogle ScholarPubMed
Robson, A.G., Holder, G.E., Moreland, J.D. & Kulikowski, J.J. (2006). Chromatic VEP assessment of human macular pigment: comparison with minimum motion and minimum flicker profiles. Visual Neuroscience 23, 275283.CrossRefGoogle ScholarPubMed
Robson, A.G., Moreland, J.D., Pauleikhoff, D., Morrissey, T., Holder, G.E., Fitzke, F.W., Bird, A.C. & van Kuijk, F.J. (2003). Macular pigment density and distribution: comparison of fundus autofluorescence with minimum motion photometry. Vision Research 43, 17651775.CrossRefGoogle ScholarPubMed
Ruddock, K.H. (1963). Evidence for macular pigmentation from colour matching data. Vision Research 3, 417429.CrossRefGoogle Scholar
Schalch, W., Cohn, W., Barker, F.M., Kopcke, W., Mellerio, J., Bird, A.C., Robson, A.G., Fitzke, F.F. & van Kuijk, F.J. (2007). Xanthophyll accumulation in the human retina during supplementation with lutein or zeaxanthin—the LUXEA (LUtein Xanthophyll Eye Accumulation) study. Archives of Biochemistry and Biophysics 458, 128135.CrossRefGoogle ScholarPubMed
Snodderly, D.M., Mares, J.A., Wooten, B.R., Oxton, L., Gruber, M., Ficek, T. & CAREDS MacularPigmentStudyGroup. (2004). Macular pigment measurement by heterochromatic flicker photometry in older subjects: The carotenoids and age-related eye disease study. Investigative Ophthalmology and Visual Science 45, 531538.CrossRefGoogle ScholarPubMed
Stabell, U. & Stabell, B. (1980). Variation in density of macular pigmentation and in short wave cone sensitivity with eccentricity. Journal of the Optical Society of America 70, 706711.CrossRefGoogle ScholarPubMed
Suttle, C.M. & Harding, G.F.A. (1999). Morphology of transient VEPs to luminance and chromatic pattern onset and offset. Vision Research 39, 15771584.CrossRefGoogle ScholarPubMed
Teller, D.Y. (1998). Spatial and temporal aspects of infant colour vision. Vision Research 38, 32753282.CrossRefGoogle Scholar
Vienot, F. (1983). Can variation in macular pigment account for the variation of colour matches with retinal position. In: Colour Vision. Physiology and Psychophysics, ed. Mollon, J.D. & Sharpe, L.T., pp. 107116. London: Academic Press.Google Scholar
Weiter, J.J., Delori, F. & Dorey, C.K. (1988). Central sparing in annular macular degeneration. American Journal of Ophthalmology 106, 286292.CrossRefGoogle ScholarPubMed
Wooten, B.R. & Hammond, B.R. Jr. (2005). Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry. Optometry and Vision Science 82, 378386.CrossRefGoogle ScholarPubMed
Wyszecki, G. & Stiles, W.S. (1982). Colour Science; Concepts and Methods, Quantitative Data and Formulae. New York: Wiley.Google Scholar
Zang, L.Y., Sommerburg, O. & van Kuijk, F.J. (1997). Absorbance changes of carotenoids in different solvents. Free Radical Biology and Medicine 23, 10861089.CrossRefGoogle ScholarPubMed
Zrenner, E. (1983). Neurophysiological Aspects of Color Vision. Berlin: Springer-Verlag.CrossRefGoogle Scholar