Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T01:53:40.510Z Has data issue: false hasContentIssue false

Melanopsin expression in the cornea

Published online by Cambridge University Press:  31 January 2018

ANTON DELWIG
Affiliation:
Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, California
SHAWNTA Y. CHANEY
Affiliation:
Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, California
ANDREA S. BERTKE
Affiliation:
Proctor Foundation, School of Medicine, University of California San Francisco, San Francisco, California
JAN VERWEIJ
Affiliation:
Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, California
SUSANA QUIRCE
Affiliation:
Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Spain
DELAINE D. LARSEN
Affiliation:
Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, California
CINDY YANG
Affiliation:
Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, California
ETHAN BUHR
Affiliation:
Department of Ophthalmology, School of Medicine, University of Washington, Seattle, Washington
RUSSELL VAN GELDER
Affiliation:
Department of Ophthalmology, School of Medicine, University of Washington, Seattle, Washington
JUANA GALLAR
Affiliation:
Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Spain
TODD MARGOLIS
Affiliation:
Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, California Proctor Foundation, School of Medicine, University of California San Francisco, San Francisco, California
DAVID R. COPENHAGEN
Affiliation:
Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, California Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, California

Abstract

A unique class of intrinsically photosensitive retinal ganglion cells in mammalian retinae has been recently discovered and characterized. These neurons can generate visual signals in the absence of inputs from rods and cones, the conventional photoreceptors in the visual system. These light sensitive ganglion cells (mRGCs) express the non-rod, non-cone photopigment melanopsin and play well documented roles in modulating pupil responses to light, photoentrainment of circadian rhythms, mood, sleep and other adaptive light functions. While most research efforts in mammals have focused on mRGCs in retina, recent studies reveal that melanopsin is expressed in non-retinal tissues. For example, light-evoked melanopsin activation in extra retinal tissue regulates pupil constriction in the iris and vasodilation in the vasculature of the heart and tail. As another example of nonretinal melanopsin expression we report here the previously unrecognized localization of this photopigment in nerve fibers within the cornea. Surprisingly, we were unable to detect light responses in the melanopsin-expressing corneal fibers in spite of our histological evidence based on genetically driven markers and antibody staining. We tested further for melanopsin localization in cell bodies of the trigeminal ganglia (TG), the principal nuclei of the peripheral nervous system that project sensory fibers to the cornea, and found expression of melanopsin mRNA in a subset of TG neurons. However, neither electrophysiological recordings nor calcium imaging revealed any light responsiveness in the melanopsin positive TG neurons. Given that we found no light-evoked activation of melanopsin-expressing fibers in cornea or in cell bodies in the TG, we propose that melanopsin protein might serve other sensory functions in the cornea. One justification for this idea is that melanopsin expressed in Drosophila photoreceptors can serve as a temperature sensor.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: SiteOne Therapeutics, San Francisco, CA.

Present address: Department of Population Health Sciences, Virginia–Maryland College of Veterinary Medicine, Blacksburg, VA.

§

Present address: Department of Neurobiology, UCLA.

**

Present address: Department of Ophthalmology, Washington University School of Medicine, Saint Louis, MO.

References

Berson, D.M., Castrucci, A.M. & Provencio, I. (2010). Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. Journal of Comparative Neurology 518, 24052422.CrossRefGoogle ScholarPubMed
Bertke, A.S., Swanson, S.M., Chen, J., Imai, Y., Kinchington, P.R. & Margolis, T.P. (2011). A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro . Journal of Virology 85, 66696677.CrossRefGoogle ScholarPubMed
Brock, J.A., McLachlan, E.M. & Belmonte, C. (1998). Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in Guinea-pig cornea. Journal of Physiology 512, 211217.CrossRefGoogle ScholarPubMed
Delwig, A., Larsen, D.D., Yasumura, D., Yang, C.F., Shah, N.M. & Copenhagen, D.R. (2016). Retinofugal projections from melanopsin-expressing retinal ganglion cells revealed by intraocular injections of cre-dependent virus. PLos One 11, e0149501.CrossRefGoogle ScholarPubMed
Digre, K.B. & Brennan, K.C. (2012). Shedding light on photophobia. Journal of Neuro-Ophthalmology 32, 6881.CrossRefGoogle ScholarPubMed
Do, M.T.H. & Yau, K.W. (2010). Intrinsically photosensitive retinal ganglion cells. Physiological Reviews 90, 15471581.CrossRefGoogle ScholarPubMed
Dolgonos, S., Ayyala, H. & Evinger, C. (2011). Light-induced trigeminal sensitization without central visual pathways: Another mechanism for photophobia. Investigative Ophthalmology & Visual Science 52, 78527858.CrossRefGoogle ScholarPubMed
Duane, T.D., Tasman, W. & Jaeger, E.A. (2013). Duane’s Ophthalmology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins.Google Scholar
Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S-K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M. & Hattar, S. (2010). Melanopsin-expressing retinal ganglion-cell photoreceptors: Cellular diversity and role in pattern vision. Neuron 67, 4960.CrossRefGoogle ScholarPubMed
González-González, O., Bech, F., Gallar, J., Merayo-Lloves, J. & Belmonte, C. (2017). Functional properties of sensory nerve terminals of the mouse cornea. Investigative Ophthalmology & Visual Science 58, 404415.CrossRefGoogle ScholarPubMed
Hartwick, A.T., Bramley, J.R., Yu, J., Stevens, K.T., Allen, C.N., Baldridge, W.H., Sollars, P.J., Pickard, G.E. (2007). Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. Journal of Neuroscience 27, 1346813480.CrossRefGoogle ScholarPubMed
Hanus, C. & Schuman, E.M. (2013). Proteostasis in complex dendrites. Nature Reviews Neuroscience 14, 638648.CrossRefGoogle ScholarPubMed
Jackson, A.P., Timmerman, M.P., Bagshaw, C.R. & Ashley, C.C. (1987). The kinetics of calcium binding to fura-2 and indo-1. FEBS Letters 216, 3539.CrossRefGoogle ScholarPubMed
Jo, A.O., Ryskamp, D.A., Phuong, T.T., Verkman, A.S., Yarishkin, O., MacAulay, N. & Križaj, D. (2015). TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Müller glia. Journal of Neuroscience 35, 1352513537.CrossRefGoogle ScholarPubMed
Kovács, I., Luna, C., Quirce, S., Mizerska, K., Callejo, G., Riestra, A., Fernández-Sánchez, L., Meseguer, V.M., Cuenca, N., Merayo-Lloves, J., Acosta, M.C., Gasull, X., Belmonte, C. & Gallar, J. (2016). Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease. Pain 157, 399417.CrossRefGoogle ScholarPubMed
Kozma-Bognar, L., Hajdu, A. & Nagy, F. (2012). Light-regulated gene expression in yeast. Methods in Molecular Biology 813, 187193.CrossRefGoogle ScholarPubMed
Krizaj, D. & Copenhagen, D.R. (1998). Compartmentalization of calcium extrusion mechanisms in the outer and inner segments of photoreceptors. Neuron 21, 249256.CrossRefGoogle ScholarPubMed
Liu, X. & Zhong, S. (2017). Interplay between light and plant hormones in the control of arabidopsis seedling chlorophyll biosynthesis. Frontiers of Plant Science 8, 1433.CrossRefGoogle ScholarPubMed
Lucas, R.J. (2013). Mammalian inner retinal photoreception. Cell Biology 23, R125R133.Google ScholarPubMed
Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., Lein, E.S. & Zeng, H. (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience 13, 133140.CrossRefGoogle ScholarPubMed
Matynia, A., Nguyen, E., Sun, X., Blixt, F.W., Parikh, S., Kessler, J., de Sevilla Muller, L.P., Habib, S., Kim, P., Wang, Z.Z., Rodriquez, A., Charles, A., Nuseinowitz, S., Edvinnson, L., Barnes, S., Brecha, N.C. & Gorin, M.B. (2016). Peripheral sensory neurons expressing melanopsin respond to light. Frontiers in Neural Circuits 10, 60.CrossRefGoogle ScholarPubMed
Ohara, P.T., Chin, M.S. & LaVail, J.H. (2000). The spread of herpes simplex virus type 1 from trigeminal neurons to the murine cornea: An immunoelectron microscopy study. Journal of Virology 74, 47764786.CrossRefGoogle Scholar
Panda, S., Provencio, I., Tu, D.C., Pires, S.S., Rollag, M.D., Castrucci, A.M., Pletcher, M.T., Sato, T.K., Wiltshire, T., Andahazy, M., Kay, S.A., Van Gelder, R.N. & Hogenesch, J.B. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525527.CrossRefGoogle ScholarPubMed
Parra, A., Madrid, R., Echevarria, D., del Olmo, S., Morenilla-Palao, C., Acosta, M.C., Gallar, J., Dhaka, A., Viana, F. & Belmonte, C. (2010). Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nature Medicine 16, 13961399.CrossRefGoogle ScholarPubMed
Regard, J.B., Sato, I.T. & Coughlin, S.R. (2008). Anatomical profiling of G-protein-coupled receptor expression. Cell 135, 561571.CrossRefGoogle ScholarPubMed
Rosenthal, P., Baran, I. & Jacobs, D.S. (2009). Corneal pain without stain: Is it real? Ocular Surface 7, 2840.CrossRefGoogle ScholarPubMed
Schmidt, T.M., Taniguchi, K. & Kofuji, P. (2008). Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. Journal of Neurophysiology 100, 371384.CrossRefGoogle ScholarPubMed
Sexton, T.J., Bleckert, A., Turner, M.H. & Van Gelder, R.N. (2015). Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype. Neural Development 10, 17.CrossRefGoogle Scholar
Semo, M., Gias, C., Ahmado, A., Sugano, E., Allen, A.E., Lawrence, J.M., Tomita, H., Coffey, P.J. & Vugler, A.A. (2010). Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional photoreception. PloS One 5, e15009.CrossRefGoogle ScholarPubMed
Shah, N.M., Pisapia, D.J., Maniatis, S., Mendelsohn, M.M., Nemes, A. & Axel, R. (2004). Visualizing sexual dimorphism in the brain. Neuron 43, 313319.CrossRefGoogle ScholarPubMed
Shen, W.L., Kwon, Y., Adegbola, A.A., Luo, J., Chess, A. & Montell, C. (2011). Function of rhodopsin in temperature discrimination in Drosophila. Science 331, 13331336.CrossRefGoogle ScholarPubMed
Sikka, G., Berkowitz, D.E., Hussman, G.P., Pandey, D., Cao, S., Hori, D., Park, J.T., Steppan, J., Kim, J.H., Barodka, V., Myers, A.C., Santhanam, L., Nyhan, D., Halushka, M.K., Koehler, R.C., Snyder, S.H., Shimoda, L.A. & Berkowitz, D.E. (2014). Melanopsin mediates light-dependent relaxation in blood vessels. Proceedings of the National Academy of Sciences of the United States of America 111, 1797717982.CrossRefGoogle ScholarPubMed
Tu, D.C., Zhang, D., Demas, J., Slutsky, E.B., Provencio, I., Holy, T.E. & Van Gelder, R.N. (2005). Physiologic diversity and development of intrinsically photosensitive retinal ganglion cells. Neuron 48, 987999.CrossRefGoogle ScholarPubMed
Valiente-Soriano, F.J., García-Ayuso, D., Ortín-Martínez, A., Jiménez-López, M., Galindo-Romero, C., Villegas-Pérez, M.P., Agudo-Barriuso, M., Vugler, A.A. & Vidal-Sanz, M. (2014). Distribution of melanopsin positive neurons in pigmented and albino mice: Evidence for melanopsin interneurons in the mouse retina. Frontiers in Neuroanatomy 8, 131.CrossRefGoogle ScholarPubMed
Walsh, F.B. (1982). Walsh and Hoyt’s Clinical Neuro-ophthalmology (4th ed.), p. 5. Baltimore: Williams & Wilkins.Google Scholar
Xue, T., Do, M.T.H., Riccio, A., Jiang, Z., Hsieh, J., Wang, H.C., Merbs, S.L., Welsbie, D.S., Yoshioka, T., Weissgerber, P., Stolz, S., Flockerzi, V., Freichel, M., Simon, M.I., Clapham, D.E. & Yau, K.W. (2011). Melanopsin signalling in mammalian iris and retina. Nature 479, 6773.CrossRefGoogle ScholarPubMed
Zariwala, H.A., Borghuis, B.G., Hoogland, T.M., Madisen, L., Tian, L., De Zeeuw, C.I., Zeng, H., Looger, L.L., Svoboda, K. & Chen, T.W. (2012). A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. Journal of Neuroscience 32, 31313141.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Delwig et al. supplementary material

Delwig et al. supplementary material 1

Download Delwig et al. supplementary material(Image)
Image 15 MB
Supplementary material: Image

Delwig et al. supplementary material

Delwig et al. supplementary material 2

Download Delwig et al. supplementary material(Image)
Image 8.9 MB