Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T07:16:29.204Z Has data issue: false hasContentIssue false

Microglia in the nerve fiber layer of the cat retina: Detection of postnatal changes by a new monoclonal antibody

Published online by Cambridge University Press:  02 June 2009

Nina Tumosa
Affiliation:
School of Optometry, University of Missouri, St. Louis
James R. Baker
Affiliation:
School of Optometry, University of Missouri, St. Louis

Abstract

This paper describes changes in the appearance and distribution of microglia in postnatal cat retina as demonstrated by a new antibody, H386F. This fractionated IgM antibody was created via an intrasplenic immunization of a single BALB/C mouse with about 2–3 × 105 large, whole cells isolated from 46 minced cat retinae. To confirm that the labeled cells are microglia, the staining properties of H386F were compared with those of four commercially available antibodies, OX-33, OX-41, OX-42, and ED-1, that have been used by others to distinguish between microglia and other cells in rat brain. These experiments show that H386F is the only antibody of the five to label only microglia in both the cat retina and hippocampus.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aihara, N., Hall, J.J., Pitts, L.H., Fukuda, K. & Noble, L.J. (1995). Altered immunoexpression of microglia and macrophages after mild head injury. Journal of Neurotrauma 12, 5363.Google Scholar
Ashwell, K. (1989). Development of microglia in the albino rabbit retina, Journal of Comparative Neurology 287, 286301.Google Scholar
Ashwell, K., Hollander, H., Streit, W. & Stone, J. (1989). The appearance and distribution of microglia in the developing retina of the rat. Visual Neuroscience 2, 437448.CrossRefGoogle ScholarPubMed
Banati, R.B. & Grabber, M.B. (1994). Surveillance, intervention and cytotoxicity: Is there a protective role of microglia? Developmental Neuroscience 16, 114127.Google Scholar
Battisti, W.P., Wang, J., Bozek, K. & Murray, M. (1995). Macrophages, microglia, and astrocytes are rapidly activated after crush injury of the goldfish optic nerve: A light and electron microscopic analysis. Journal of Comparative Neurology 354, 306320.Google Scholar
Boycott, B.B. & Hopkins, J.M. (1981). Microglia in the retina of monkey and other mammals: Its distinction from other types of glia and horizontal cells. Neuroscience 6, 679688.Google Scholar
Chan-Ling, T. (1994). Glial, neuronal and vascular interactions in the mammalian retina. In Progress in Retinal Eye Research, ed. Osborne, N.N. & Chader, G.J., pp. 357389. Oxford: Pergamon Press.Google Scholar
Cuadros, M.A., Martin, C., Coltey, P., Almendros, A. & Navas-Cues, J. (1993). First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. Journal of Comparative Neurology 330, 113129.Google Scholar
Cuadros, M.A., Moujahid, A., Martin-Partido, G. & Navascues, J. (1992). Microglia in the mature and developing quail brain as revealed by a monoclonal antibody recognizing hemopoietic cells. Neuroscience Letters 148, 1114.Google Scholar
Cuadros, M.A., Moujahid, A., Quesada, A. & Navascues, J. (1994). Development of microglia in the quail optic tectum. Journal of Comparative Neurology 348, 207224.CrossRefGoogle ScholarPubMed
Del Rio-Hortega, P. (1932). Microglia. In Cytology and Cellular Pathology of the Nervous System, Vol 2, ed. Penfield, W., pp. 481534. New York: Hoeber Inc.Google Scholar
Dijkstra, C.D., Doop, E.A., Joling, P. & Kraal, G. (1985). The heterogeneity of mononuclear phagocytes in lymphoid organs: Distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54, 589599.Google Scholar
Dowding, A.J., Maggs, A. & Scholes, J. (1991). Diversity amongst the microglia in growing and regenerating fish CNS: Immunohis-tochemical characterization using FL. 1, an anti-macrophage monoclonal antibody. Glia 4, 345364.CrossRefGoogle Scholar
Drager, U.C. (1983). Coexistence of neurofilaments and vimentin in a neurone of adult mouse retina. Nature (London) 303, 169172.Google Scholar
Famiglietti, E.V. & Tumosa, N. (1987). Immunocytochemical staining of cholinergic amacrine cells in rabbit retina. Brain Research 413, 398403.CrossRefGoogle ScholarPubMed
Gehrmann, J. & Kreutzberg, G.W. (1991). Characterisation of two new monoclonal antibodies directed against rat microglia. Journal of Comparative Neurology 313, 409430.CrossRefGoogle ScholarPubMed
Goodbrand, I.A. & Gaze, R.M. (1991). Microglia in tadpoles of Xenopus laevis: Normal distribution and the response to optic nerve injury. Anatomy and Embryology 184, 7182.CrossRefGoogle ScholarPubMed
Grabber, M.B., Banati, R.B., Streit, W.J. & Kreutzberg, G.W. (1989). Immunophenotypic characterization of rat brain macrophages in culture. Neuroscience Letters 103, 241246.CrossRefGoogle Scholar
Graeber, M.B., Streit, W.J. & Kreutzberg, G.W. (1988). Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. Journal of Neuroscience Research 21, 1824.Google Scholar
Hayes, G.M., Woodroofe, M.N. & Cuzner, M.L. (1988). Characterisation of microglia isolated from adult human and rat brain. Journal of Neuroimmunology 19, 177189.Google Scholar
Hume, D.A., Perry, V.H. & Gordon, S. (1983). Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: Phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. Journal of Cell Biology 97, 253257.CrossRefGoogle Scholar
Kornguth, S.E., Langer, E. & Scott, G. (1981). Antigenic properties of large ganglion cells isolated from ox retina, Experimental Eye Research 33, 413432.CrossRefGoogle ScholarPubMed
Lawson, L.J., Perry, V.H., Dri, P. & Gordon, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151170.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Rodieck, R.W. & Dreher, B. (1985). Central projections of cat retinal ganglion cells. Journal of Comparative Neurology 237, 216226.Google Scholar
Marchesani, O. (1926). Die morphologie der glia im nervus opticus und in der retina, dargestellt nach den neuesten untersuchungs-methoden und untersuchungsergebnissen. I. Mitteilung. Albrecht von Graefe's Archiv fur Ophthalmologie 117, 575605.Google Scholar
Milligan, C.E., Cunningham, T.J. & Levitt, P. (1991). Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. Journal of Comparative Neurology 314, 125135.CrossRefGoogle ScholarPubMed
Navascues, J., Moujahid, A., Quesada, A. & Cuadros, M.A. (1994). Microglia in the avian retina: Immunocytochemical demonstration in the adult quail. Journal of Comparative Neurology 350, 171186.Google Scholar
Penfold, P.L., Madigan, M.C. & Provis, J.M. (1991). Antibodies to human leucocyte antigens indicate subpopulations of microglia in human retina. Visual Neuroscience 7, 383388.CrossRefGoogle ScholarPubMed
Penfold, P.L., Provis, J.M. & Liew, S.C.K. (1993). Human retinal microglia express phenotypic characteristics in common with dendritic antigen-presenting cells. Journal of Neuroimmunology 45, 183192.Google Scholar
Perry, V.H. (1994). Macrophages and the Nervous System. Boca Raton, Florida: CRC Press, Inc.Google Scholar
Perry, V.H. & Gordon, S. (1988). Macrophages and microglia in the nervous system. Trends in Neuroscience 11, 273277.Google Scholar
Perry, V.H., Hume, D.A. & Gordon, S. (1985). Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313326.CrossRefGoogle ScholarPubMed
Provis, J.M., Penfold, P.L., Edwards, A.J. & Van Driel, D. (1995). Human retinal microglia: Expression of immune markers and relationship to the Glia Limitans. Glia 14, 243256.CrossRefGoogle Scholar
Rapaport, D.H. & Stone, J. (1983). Time course of morphological differentiation of cat retinal ganglion cells: Influences on soma size. Journal of Comparative Neurology 221, 4252.Google Scholar
Robinson, A.P., White, T.M. & Mason, D.W. (1986). Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57, 239247.Google ScholarPubMed
Sanyal, S. & De Ruiter, A. (1985). Inosine diphosphatase as a histochemical marker for retinal microvasculature, with special reference to transformation of microglia. Cell and Tissue Research 241, 291297.Google Scholar
Schnitzer, J. (1989). Enzyme-histochemical demonstration of microglial cells in the adult and postnatal rabbit retina. Journal of Comparative Neurology 282, 249263.CrossRefGoogle ScholarPubMed
Schnitzer, J. & Scherer, J. (1990). Microglial cell responses in the rabbit retina following transection of the optic nerve. Journal of Comparative Neurology 302, 779791.CrossRefGoogle ScholarPubMed
Sminia, T., De Groot, C.J.A., Dijkstra, C.D., Koetsier, J.C. & Polman, C.H. (1987). Macrophages in the central nervous system of the rat. Immunobiology 174, 4350.Google Scholar
Stone, J. (1978). The number and distribution of ganglion cells in the cat's retina. Journal of Comparative Neurology 180, 753772.Google Scholar
Streit, W.J., Grabber, M.B. & Kreutzberg, G.W. (1988). Functional plasticity of microglia: A Review. Glia 1, 301307.Google Scholar
Theele, D.P. & Streit, W.J. (1993). A chronicle of microglial ontogeny. Glia 7, 58.CrossRefGoogle ScholarPubMed
Thomas, W.E. (1992). Brain macrophages: Evaluation of microglia and their functions. Brain Research Reviews 17, 6174.CrossRefGoogle ScholarPubMed
Tumosa, N. (1995). A new antibody recognizes only microglia in the cat brain. Society for Neuroscience Abstracts 21, 135.18.Google Scholar
Tumosa, N. & Baker, J.R. (1994). Postnatal Development of ramified microglia occurs in the cat retina. Society for Neuroscience Abstracts 20, 873.Google Scholar
Tumosa, N. & Kahan, L. (1989). Fluorescent E1A screening of monoclonal antibodies to cell surface antigens. Journal of Immunological Methods 116, 5963.Google Scholar
Tumosa, N. & Stell, W.K. (1986). Choline acetyltransferase immuno-reactivity suggests that ganglion cells in the goldfish retina are not cholinergic. Journal of Comparative Neurology 244, 267275.Google Scholar
Wong, R.O.L. & Hughes, A. (1987). Developing neuronal populations of the cat retinal ganglion cell layer. Journal of Comparative Neurology 262, 473495.CrossRefGoogle ScholarPubMed