Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T06:02:36.220Z Has data issue: false hasContentIssue false

Psychophysical assessment of magno- and parvocellular function in schizophrenia

Published online by Cambridge University Press:  06 September 2006

SANDRINE DELORD
Affiliation:
Université Bordeaux 2, Equipe de Psychologie Cognitive, Laboratoire de Psychologie (EA 3662), Bordeaux, France
MARIA GIOVANNA DUCATO
Affiliation:
CNRS FRE 2726, Laboratoire de Neurosciences Fonctionnelles et Pathologies, Lille, France Université Lille 2, CHRU de Lille, Lille, France
DELPHINE PINS
Affiliation:
CNRS FRE 2726, Laboratoire de Neurosciences Fonctionnelles et Pathologies, Lille, France Université Lille 2, CHRU de Lille, Lille, France
FRÉDÉRIC DEVINCK
Affiliation:
Section of Neurobiology, Physiology and Behavior, Department of Ophthalmology, University of California at Davis, Davis, California
PIERRE THOMAS
Affiliation:
CNRS FRE 2726, Laboratoire de Neurosciences Fonctionnelles et Pathologies, Lille, France Université Lille 2, CHRU de Lille, Lille, France
MURIEL BOUCART
Affiliation:
CNRS FRE 2726, Laboratoire de Neurosciences Fonctionnelles et Pathologies, Lille, France Université Lille 2, CHRU de Lille, Lille, France
KENNETH KNOBLAUCH
Affiliation:
INSERM, U371, Cerveau et Vision, Department of Cognitive Neuroscience, Bron, France Université Claude Bernard Lyon 1, Lyon, France

Abstract

Recently developed psychophysical techniques permit the biasing of the processing of the stimulus by early visual channels so that responses reflect characteristics of either magno- or parvocellular pathways (Pokorny & Smith, 1997). We used such techniques to test psychophysically whether the global magnocellular dysfunction reported in schizophrenia also affects early processes. Seven schizophrenic patients and 19 normal controls participated. The task was a four-alternative forced-choice luminance discrimination, using a 2 × 2 configuration of four 1-deg squares. Target luminance threshold was determined in three conditions: the stimulus, including the target, was pulsed for 17 ms (pulse paradigm); the target was presented on a steady background of four squares (steady paradigm), or the target was presented alone (no background paradigm). We replicated previous results demonstrating magnocellular and parvocellular signatures in control participants. No evidence for an early magnocellular deficit could be detected as the thresholds of all schizophrenic observers were higher both in the steady paradigm (presumed magnocellular mediation) and in the pulse paradigm (presumed parvocellular mediation). Magnocellular dysfunction, if present in schizophrenia, must concern more integrated processes, possibly at levels at which parvocellular and magnocellular paths interact.

Type
CLINICAL PSYCHOPHYSICS
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, K.R., Pokorny, J., Smith, V.C., Fishman, G.A., & Barnes, C.A. (2001). Contrast discrimination deficits in retinis pigmentosa are greater for stimuli that favor the magnocellular pathways. Vision Research 41, 671683.CrossRefGoogle Scholar
Bedwell, J.S., Brown, J.M., & Miller, L.S. (2002). The magnocellular visual system and schizophrenia: what can the color red tell us? Schizophrenia Research 63, 273284.Google Scholar
Bedwell, J.S., Miller, L.S., Brown, J.M., McDowell, J.E., & Yanasak, N.E. (2004). Functional magnetic resonance imaging examination of the magnocellular pathway in non psychotic relatives of persons with schizophrenia. Schizophrenia Research 71, 509510.CrossRefGoogle Scholar
Blin, O., Mestre, D., Paut, O., Vercher, J.L., & Auderbert, C. (1993). GABA-ergic control of visual perception in healthy volunteers: Effects of midazolam, a benzodiazepine, on spatial-temporal contrast sensitivity. British Journal of Clinical Pharmacology 36, 117124.CrossRefGoogle Scholar
Braus, D.F., Weber-Fahr, W., Tost, H., Ruf, M., & Henn, F.A. (2002). Sensory information processing in neuroleptic naïve first-episode schizophrenic patients: A functional magnetic resonance imaging study. Archives of General Psychiatry 59, 696701.CrossRefGoogle Scholar
Breitmeyer, B.G. & Ogmen, H. (2000). Recent models and findings in visual backward masking: a comparison, review, and update. Perception & Psychophysics 62, 15721595.CrossRefGoogle Scholar
Butler, P.D. & Javitt, D.C. (2005). Early-stage visual processing deficits in schizophrenia. Current Opinion in Psychiatry 18, 151157.CrossRefGoogle Scholar
Butler, P.D., DeSanti, L.A., Maddox, J., Harkavy-Friedman, J.M., Amador, X.F., Goetz, R.R., Javitt, D.C., & Gorman, J.M. (2002). Visual backward-masking deficits in schizophrenia: relationship to visual pathway function and symptomatology. Schizophrenia Research 59, 199209.Google Scholar
Butler, P.D., Schechter, I., Zemon, V., Schwartz, S.G., Greenstein, V.C., Gordon, J.G., Schroeder, C.E., & Javitt, D.C. (2001). Dysfunction of early-stage visual processing in schizophrenia. American Journal of Psychiatry 158, 11261133.CrossRefGoogle Scholar
Cadenhead, K.S., Serper, Y., & Braff, D.L. (1998). Transient and sustained visual backward masking deficits of schizophrenia patients. Biological Psychiatry 43, 132138.CrossRefGoogle Scholar
Carney, T. (1990). MatVis. http://www.neurometrics.com/MatVisCommands/MatVisHome.htm. Oakland, CA: Neurometrics Institute.
Chen, Y., Levy, D.L., Sheremata, S., Nakayama, K., Matthysse, S., & Holtzman, P.S. (2003). Effects of typical, atypical and non antipsychotic drugs on visual contrast detection in schizophrenia. American Journal of Psychiatry 160, 17951801.CrossRefGoogle Scholar
Chen, Y., Palafox, G., Nakayama, K., Levy, D., Matthysse, S., & Holtman, P.S. (1999). Motion perception in schizophrenia. Archives of General Psychiatry 56, 145154.CrossRefGoogle Scholar
Delord, S. (1998). Which mask is the most efficient: A pattern or a noise? It depends on the task. Visual Cognition 5, 313338.CrossRefGoogle Scholar
Doniger, G.M., Foxe, J.J., Murray, M.M., Higgins, B.A., & Javitt, D.C. (2002). Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Archives of General Psychiatry 59, 10111020.CrossRefGoogle Scholar
Enns, J.T. & Di Lollo, V. (2000). What's new in visual masking? Trends in Cognitive Science 4, 345352.Google Scholar
Giersch, A., Boucart, M., & Danion, J.-M. (1997). Lorazepam, a benzodiazepine, induces atypical distractor effects with compound stimuli: A role for line-ends in the processing of compound letters. Visual Cognition 4, 337372.CrossRefGoogle Scholar
Granholm, E. & Verney, S.P. (2004). Pupillary responses and attentional allocation problems on the backward masking task in schizophrenia. International Journal of Psychophysiology 52, 3751.CrossRefGoogle Scholar
Holcomb, H.H., Parwani, A., McMahon, R.P., Medoff, D.R., Frey, K., Lahti, A.C., & Tamminga, C.A. (2004). Parametric study of accuracy and response time in schizophrenic persons making visual or auditory discriminations. Psychiatry Research 127, 207216.Google Scholar
Kaplan, E. & Shapley, R.M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the U.S.A. 83, 27552757.CrossRefGoogle Scholar
Kay, S.R., Fiszbein, A., & Opler, L.A. (1987). The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261276.CrossRefGoogle Scholar
Keri, S., Antal, A., Szekeres, G., Benedek, G., & Janka, Z. (2002). Spatiotemporal visual processing in schizophrenia. Journal of Neuropsychiatry and Clinical Neuroscience 14, 190196.CrossRefGoogle Scholar
Kim, D., Zemon, V., Saperstein, A., Butler, P.D., & Javitt, D.C. (2005). Dysfunction of early-stages visual processing in schizophrenia: Harmonic analysis. Schizophrenia Research 76, 5565.CrossRefGoogle Scholar
McClure, R.K. (2001). The visual backward masking deficit in schizophrenia. Progress in Neuropsychopharmacology and Biological Psychiatry 25, 301311.CrossRefGoogle Scholar
Pokorny, J. & Smith, V.S. (1997). Psychophysical signatures associated with magnocellular and parvocellular pathways contrast gain. Journal of the Optical Society of America A 14, 24772486.CrossRefGoogle Scholar
Schechter, I., Butler, P.D., Silipo, G., Zemon, V., & Javitt, D.C. (2003). Magnocellular and parvocellular contributions to backward masking dysfunction in schizophrenia. Schizophrenia Research 64, 91101.CrossRefGoogle Scholar
Schwartz, B.D., Tomlin, H.R., Evans, W.J., & Ross, K.V. (2001). Neurophysiologic mechanisms of attention: A selective review of early information processing in schizophrenics. Frontiers in Bioscience 6, 120134.Google Scholar
Sheehan, D.V., Lecrubier, Y., Sheehan, K.H., Amorim, P., Janavs, J., Weiller, E., Herguetta, T., Baker, R., & Dunbar, G.C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59, suppl. 20: 2233; quiz 34–57.Google Scholar
Slaghuis, W.L. (2004). Spatio-temporal luminance contrast sensitivity and visual backward masking in schizophrenia. Experimental Brain Research 156, 196211.CrossRefGoogle Scholar
Smith, V.C. & Pokorny, J. (2003). Pyschophysical correlates of parvo- and magnocellular function. In Normal and Defective Colour Vision, eds. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 91105. Oxford, England: Oxford University Press.CrossRef
Stafanous, S.N., Clarke, M.P., Ashton, H., & Mitchell, K.W. (1999). The effect of long-term use of benzodiazepines on the eye and the retina. Documenta Ophthalmologica 99, 5568.CrossRefGoogle Scholar
van der Stelt, O., Frye, J., Lieberman, J.A., & Belger, A. (2004). Impaired P3 generation reflects high-level and progressive neurocognitive dysfunction in schizophrenia. Archives of General Psychiatry 61, 237248.CrossRefGoogle Scholar
Waberski, T.D., Norra, C., Kawohl, W., Thyerlei, D., Hock, D., Klostermann, F., Curio, G., Buchner, H., Hoff, P., & Gobbelé, R. (2004). Electrophysiological evidence for altered early cerebral somatosensory signal processing in schizophrenia. Psychophysiology 41, 361366.CrossRefGoogle Scholar
Wexler, B.E., Nicholls, S.S., & Bell, M.D. (2003). Instability of cognitive processing systems in schizophrenia. Schizophrenia Research 71, 513514.Google Scholar