Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T23:27:10.273Z Has data issue: false hasContentIssue false

S cones: Evolution, retinal distribution, development, and spectral sensitivity

Published online by Cambridge University Press:  29 July 2013

DAVID M. HUNT*
Affiliation:
School of Animal Biology, Lions Eye Institute and UWA Oceans Institute, University of Western Australia, Perth, Australia
LEO PEICHL
Affiliation:
Max Planck Institute for Brain Research, Research Unit Mammalian Retina, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
*
*Address correspondence to: David M. Hunt, School of Animal Biology, Lions Eye Institute and UWA Oceans Institute, M317, University of Western Australia, Perth, 6009, Australia. E-mail: david.hunt@uwa.edu.au

Abstract

S cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. & Raymond, P.A. (2008). Have we achieved a unified model of photoreceptor cell fate specification in vertebrates? Brain Research 1192, 134150.CrossRefGoogle ScholarPubMed
Ahnelt, P.K. (1985). Characterization of the color related receptor mosaic in the ground squirrel retina. Vision Research 25, 15571567.Google Scholar
Ahnelt, P.K., Fernández, E., Martinez, O., Bolea, J.A. & Kübber-Heiss, A. (2000). Irregular S-cone mosaics in felid retinas. Spatial interaction with axonless horizontal cells, revealed by cross correlation. Journal of the Optical Society of America A: Optics, Image Science and Vision 17, 580588.Google Scholar
Ahnelt, P.K., Hokoc, J.N. & Röhlich, P. (1995). Photoreceptors in a primitive mammal, the South American opossum, Didelphis marsupialis aurita: Characterization with anti-opsin immunolabeling. Visual Neuroscience 12, 793804.Google Scholar
Ahnelt, P.K., Keri, C. & Kolb, H. (1990). Identification of pedicles of putative blue-sensitive cones in the human retina. The Journal of Comparative Neurology 293, 3953.Google Scholar
Ahnelt, P.K. & Kolb, H. (2000). The mammalian photoreceptor mosaic-adaptive design. Progress in Retinal and Eye Research 19, 711777.Google Scholar
Ahnelt, P.K., Moutairou, K., Glösmann, M. & Kubber-Heiss, A. (2003). Lack of S-opsin expression in the brush-tailed porcupine (Atherurus africanus) and other mammals. Is the Evolutionary Persistence of S-cones a Paradox? In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 3138. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Ahnelt, P.K., Schubert, C., Kubber-Heiss, A., Schiviz, A. & Anger, E. (2006). Independent variation of retinal S and M cone photoreceptor topographies: A survey of four families of mammals. Visual Neuroscience 23, 429435.Google Scholar
Aidala, Z., Huynen, L., Brennan, P.L., Musser, J., Fidler, A., Chong, N., Machovsky Capuska, G.E., Anderson, M.G., Talaba, A., Lambert, D. & Hauber, M.E. (2012). Ultraviolet visual sensitivity in three avian lineages: Paleognaths, parrots, and passerines. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 198, 495510.Google Scholar
Applebury, M.L. (2001) Response: The uncommon retina of the common house mouse. Trends in Neurosciences 24, 250.Google Scholar
Applebury, M.L., Antoch, M.P., Baxter, L.C., Chun, L. L., Falk, J.D., Farhangfar, F., Kage, K., Krzystolik, M.G., Lyass, L.A. & Robbins, J.T. (2000). The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27, 513523.Google Scholar
Applebury, M.L., Farhangfar, F., Glösmann, M., Hashimoto, K., Kage, K., Robbins, J.T., Shibusawa, N., Wondisford, F.E. & Zhang, H. (2007). Transient expression of thyroid hormone nuclear receptor TRβ2 sets S opsin patterning during cone photoreceptor genesis. Developmental Dynamics 236, 12031212.Google Scholar
Arango-Gonzalez, B., Szabo, A., Pinzon-Duarte, G., Lukats, A., Guenther, E. & Kohler, K. (2010). In vivo and in vitro development of S- and M-cones in rat retina. Investigative Ophthalmology and Visual Science 51, 53205327.Google Scholar
Arrese, C.A., Hart, N.S., Thomas, N., Beazley, L.D. & Shand, J. (2002). Trichromacy in Australian marsupials. Current Biology 12, 657660.CrossRefGoogle ScholarPubMed
Arrese, C.A., Oddy, A.Y., Runham, P.B., Hart, N.S., Shand, J., Hunt, D.M. & Beazley, L.D. (2005). Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Proceedings of the Royal Society of London. Series B, Biological Sciences 272, 791796.Google Scholar
Arrese, C.A., Rodger, J., Beazley, L.D. & Shand, J. (2003). Topographies of retinal cone photoreceptors in two Australian marsupials. Visual Neuroscience 20, 307311.CrossRefGoogle ScholarPubMed
Azzam, N., Levanon, D. & Dovrat, A. (2004). Effects of UV-A irradiation on lens morphology and optics. Experimental Gerontology 39, 139146.CrossRefGoogle ScholarPubMed
Babu, K.R., Dukkipati, A., Birge, R.R. & Knox, B.E. (2001). Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion. Biochemistry 40, 1376013766.Google Scholar
Baraas, R.C., Carroll, J., Gunther, K.L., Chung, M., Williams, D.R., Foster, D.H. & Neitz, M. (2007). Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. Journal of the Optical Society of America A: Optics Image Science and Vision 24, 14381447.Google Scholar
Baraas, R.C., Hagen, L.A., Dees, E.W. & Neitz, M. (2012). Substitution of isoleucine for threonine at position 190 of S-opsin causes S-cone-function abnormalities. Vision Research 73, 19.Google Scholar
Bischof, H.J., Niessner, C., Peichl, L.Wiltschko, R. & Wiltschko, W. (2011). Avian UV/violet cones as magnetoreceptors. The problem of separating visual and magnetic information. Communicative & Integrative Biology 4, 713716.Google Scholar
Bowmaker, J.K. (1977). The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Research 17, 11291138.Google Scholar
Bowmaker, J.K. (2008). Evolution of vertebrate visual pigments. Vision Research 48, 20222041.Google Scholar
Bowmaker, J.K., Astell, S., Hunt, D.M. & Mollon, J.D. (1991). Photosensitive and photostable pigments in the retinae of Old World monkeys. Journal of Experimental Biology 156, 119.Google Scholar
Bowmaker, J.K., Heath, L.A., Wilkie, S.E. & Hunt, D.M. (1997). Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Research 37, 21832194.Google Scholar
Bowmaker, J.K. & Hunt, D.M. (2006). Evolution of vertebrate visual pigments. Current Biology 16, R484R489.Google Scholar
Bridge, E.S. & Eaton, M.D. (2005). Does ultraviolet reflectance accentuate a sexually selected signal in terns? Journal of Avian Biology 36, 1821.Google Scholar
Brin, K.P. & Ripps, H. (1977). Rhodopsin photoproducts and rod sensitivity in the skate retina. Journal of General Physiology 69, 97120.Google Scholar
Brouwer, K., Jones, M.L., King, C.E. & Schifter, H. (2000). Longevity records for Psittaciformes in captivity. International Zoo Yearbook 37, 299316.CrossRefGoogle Scholar
Bumsted, K., Jasoni, C., Szél, A. & Hendrickson, A. (1997). Spatial and temporal expression of cone opsins during monkey retinal development. The Journal of Comparative Neurology 378, 117134.Google Scholar
Calderone, J.B. & Jacobs, G.H. (1995). Regional variations in the relative sensitivity to UV light in the mouse retina. Visual Neuroscience 12, 463468.Google Scholar
Calderone, J.B. & Jacobs, G.H. (1999). Cone receptor variations and their functional consequences in two species of hamster. Visual Neuroscience 16, 5363.Google Scholar
Calderone, J.B., Reese, B.E. & Jacobs, G. H. (2003). Topography of photoreceptors and retinal ganglion cells in the spotted hyena (Crocuta crocuta). Brain, Behavior and Evolution 62, 182192.Google Scholar
Calkins, D.J. (2001). Seeing with S cones. Progress in Retinal and Eye Research 20, 255287.Google Scholar
Carvalho, L.S., Cowing, J.A., Wilkie, S. E., Bowmaker, J.K. & Hunt, D.M. (2006). Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle. Current Biology 16, R81R83.Google Scholar
Carvalho, L.S., Cowing, J.A., Wilkie, S.E., Bowmaker, J.K. & Hunt, D.M. (2007). The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Molecular Biology and Evolution 24, 18431852.Google Scholar
Carvalho, L.S., Davies, W.L., Robinson, P. R. & Hunt, D.M. (2012). Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proceedings of the Royal Society of London. Series B, Biological Sciences 279, 387393.Google ScholarPubMed
Carvalho, L.S., Knott, B., Berg, M.L., Bennett, A.T. & Hunt, D.M. (2011). Ultraviolet-sensitive vision in long-lived birds. Proceedings of the Royal Society of London. Series B, Biological Sciences 278, 107114.Google Scholar
Chávez, A.E., Bozinovic, F., Peichl, L. & Palacios, A.G. (2003). Retinal spectral sensitivity, fur coloration and urine reflectance in the genus Octodon (Rodentia): Implications for visual ecology. Investigative Ophthalmology and Visual Science 44, 22902296.Google Scholar
Cheng, C.L. & Flamarique, I.N. (2007). Chromatic organization of cone photoreceptors in the retina of rainbow trout: Single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. The Journal of Experimental Biology 210, 41234135.Google Scholar
Cheng, C.L., Gan, K.J. & Flamarique, I.N. (2009). Thyroid hormone induces a time-dependent opsin switch in the retina of salmonid fishes. Investigative Ophthalmology and Visual Science 50, 30243032.Google Scholar
Cheng, H., Khan, N.W., Roger, J.E. & Swaroop, A. (2011). Excess cones in the retinal degeneration rd7 mouse, caused by the loss of function of orphan nuclear receptor Nr2e3, originate from early-born photoreceptor precursors. Human Molecular Genetics 20, 41024115.CrossRefGoogle ScholarPubMed
Cheng, L.C. & Flamarique, I.N. (2004). Opsin expression: New mechanism for modulating colour vision. Nature 428, 279.Google Scholar
Church, S.C., Bennett, A.T.D., Cuthill, I.C. & Partridge, J.C. (1998). Ultraviolet cues affect the foraging behaviour of blue tits. Proceedings of the Royal Society of London. Series B, Biological Sciences 265, 15091514.Google Scholar
Collier, R.J., Waldron, W.R. & Zigman, S. (1989). Temporal sequence of changes to the gray squirrel retina after near-UV exposure. Investigative Ophthalmology and Visual Science 30, 631637.Google Scholar
Collin, S.P., Hart, N.S., Shand, J. & Potter, I. C. (2003a). Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis). Visual Neuroscience 20, 119130.Google Scholar
Collin, S.P., Knight, M.A., Davies, W.L., Potter, I.C., Hunt, D.M. & Trezise, A.E. (2003b). Ancient colour vision: Multiple opsin genes in the ancestral vertebrates. Current Biology 13, R864865.Google Scholar
Cornish, E.E., Xiao, M., Yang, Z., Provis, J. M. & Hendrickson, A.E. (2004). The role of opsin expression and apoptosis in determination of cone types in human retina. Experimental Eye Research 78, 11431154.Google Scholar
Cornwall, M.C., Ripps, H., Chappell, R.L. & Jones, G.J. (1989). Membrane current responses of skate photoreceptors. Journal of General Physiology 94, 633647.Google Scholar
Cowing, J.A., Arrese, C.A., Davies, W.L., Beazley, L.D. & Hunt, D.M. (2008). Cone visual pigments in two marsupial species: The fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratus). Proceedings of the Royal Society of London. Series B, Biological Sciences 275, 14911499.Google Scholar
Cowing, J.A., Poopalasundaram, S., Wilkie, S.E., Robinson, P.R., Bowmaker, J.K. & Hunt, D.M. (2002). The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Biochemistry Journal 367, 129135.Google Scholar
Curcio, C.A. & Hendrickson, A.E. (1991). Organization and development of the primate photoreceptor mosaic. Progress in Retinal Research 10, 89120.Google Scholar
Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. (1990). Human photoreceptor topography. The Journal of Comparative Neurology 292, 497523.Google Scholar
David-Gray, Z.K., Bellingham, J., Munoz, M., Avivi, A., Nevo, E. & Foster, R.G. (2002). Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi). The European Journal of Neuroscience 16, 11861194.Google Scholar
Davies, W.I., Collin, S.P. & Hunt, D.M. (2012). Molecular ecology and adaptation of visual photopigments in craniates. Molecular Ecology 21, 31213158.Google Scholar
Davies, W.L., Carvalho, L.S., Cowing, J.A., Beazley, L.D., Hunt, D.M. & Arrese, C.A. (2007). Visual pigments of the platypus: a novel route to mammalian colour vision. Current Biology 17, R161R163.Google Scholar
Davies, W.L., Carvalho, L.S., Tay, B.H., Brenner, S., Hunt, D.M. & Venkatesh, B. (2009a). Into the blue: Gene duplication and loss underlie color vision adaptations in a deep-sea chimaera, the elephant shark Callorhinchus milii. Genome Research 19, 415426.Google Scholar
Davies, W.L., Cowing, J.A., Bowmaker, J.K., Carvalho, L.S., Gower, D.J. & Hunt, D.M. (2009b). Shedding light on serpent sight: The visual pigments of henophidian snakes. The Journal of Neuroscience 29, 75197525.Google Scholar
Deeb, S.S., Wakefield, M.J., Tada, T., Marotte, L., Yokoyama, S. & Marshall Graves, J.A. (2003). The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): Sequence, spectral tuning, and evolution. Molecular Biology and Evolution 20, 16421649.Google Scholar
Dkhissi-Benyahya, O., Szél, A., Degrip, W.J. & Cooper, H.M. (2001). Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus). The Journal of Comparative Neurology 438, 490504.Google Scholar
Dulai, K.S., von Dornum, M, Mollon, J.D. & Hunt, D. M. (1999). The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Research 9, 629638.Google Scholar
Eaton, M.D. & Lanyon, S.M. (2003). The ubiquity of avian ultraviolet plumage reflectance. Proceedings of the Royal Society of London. Series B, Biological Sciences 270, 17211726.Google Scholar
Ekesten, B., Gouras, P. & Hargitai, J. (2002). Co-expression of murine opsins facilitates identifying the site of cone adaptation. Visual Neuroscience 19, 389393.Google Scholar
Ellingson, J.M., Fleishman, L.J. & Loew, E.R. (1995). Visual pigments and spectral sensitivity of the diurnal gecko Gonatodes albogularis. The Journal of Comparative Physiology A 177, 559567.Google Scholar
Famiglietti, E.V. & Sharpe, S.J. (1995). Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Visual Neuroscience 12, 11511175.Google Scholar
Fasick, J.I., Applebury, M.L. & Oprian, D.D. (2002). Spectral tuning in the mammalian short-wavelength sensitive cone pigments. Biochemistry 41, 68606865.Google Scholar
Feuda, R., Hamilton, S.C., McInerney, J.O. & Pisani, D. (2012). Metazoan opsin evolution reveals a simple route to animal vision. Proceedings of the National Academy of Sciences of the United States of America 109, 1886818872.Google Scholar
Fleishman, L.J., Loew, E.R. & Leal, M. (1993). Ultraviolet vision in lizards. Nature 365, 397.Google Scholar
Fleishman, L.J., Loew, E.R. & Whiting, M.J. (2011). High sensitivity to short wavelengths in a lizard and implications for understanding the evolution of visual systems in lizards. Proceedings of the Royal Society of London. Series B, Biological Sciences 278, 28912899.Google Scholar
Forrest, D. & Swaroop, A. (2012). Minireview: The role of nuclear receptors in photoreceptor differentiation and disease. Molecular Endocrinology 26, 905915.Google Scholar
Galli-Resta, L., Novelli, E., Kryger, Z., Jacobs, G.H. & Reese, B.E. (1999). Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule. The European Journal of Neuroscience 11, 14611469.Google Scholar
Glaschke, A., Glösmann, M. & Peichl, L. (2010). Developmental changes of cone opsin expression but not retinal morphology in the hypothyroid Pax8 knockout mouse. Investigative Ophthalmology and Visual Science 51, 17191727.Google Scholar
Glaschke, A., Weiland, J., Del Turco, D., Steiner, M., Peichl, L. & GlÖsmann, M. (2011).Thyroid hormone controls cone opsin expression in the retina of adult rodents. The Journal of Neuroscience 31, 48444851.Google Scholar
Glösmann, M. & Ahnelt, P.K. (1998). Coexpression of M- and S-opsin extends over the entire inferior mouse retina. Investigative Ophthalmology and Visual Science 39, S1059. Abstract no. 4897.Google Scholar
Glösmann, M., Arbogast, P. & Peichl, L. (2009). Patterns of cone opsin expression are different in wildtype and albino retinas. Investigative Ophthalmology and Visual Science 50, E-Abstract 2726.Google Scholar
Glösmann, M., Peichl, L., Neumann, K. & Gattermann, R. (2006). Lack of a functional shortwave-sensitive cone opsin is a species trait in the golden hamster. Investigative Ophthalmology and Visual Science 47, E-Abstract 2838.Google Scholar
Glösmann, M., Steiner, M., Peichl, L. & Ahnelt, P.K. (2008). Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole. Journal of Vision 8, 1221.Google Scholar
Gresh, J., Goletz, P.W., Crouch, R.K. & Rohrer, B. (2003). Structure-function analysis of rods and cones in juvenile, adult, and aged C57BL/6 and Balb/c mice. Visual Neuroscience 20, 211220.Google Scholar
Griebel, U. & Peichl, L. (2003). Color vision in aquatic mammals—facts and open questions. Aquatic Mammals 29, 1830.Google Scholar
Griebel, U. & Schmid, A. (1996). Color vision in the manatee (Trichechus manatus). Vision Research 36, 27472757.Google Scholar
Gunther, K.L., Neitz, J. & Neitz, M. (2006). A novel mutation in the short-wavelength-sensitive cone pigment gene associated with tritan color vision defect. Visual Neuroscience 23, 403409.Google Scholar
Haider, N.B., Demarco, P., Nystuen, A.M., Huang, X., Smith, R.S., McCall, M.A., Naggert, J.K. & Nishina, P.M. (2006). The transcription factor Nr2e3 functions in retinal progenitors to suppress cone cell generation. Visual Neuroscience 23, 917929.Google Scholar
Hart, N.S. (2001a). Variations in cone photoreceptor abundance and the visual ecology of birds. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 187, 685697.Google Scholar
Hart, N.S. (2001b). The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research 20, 675703.Google Scholar
Hart, N.S., Lisney, T.J., Marshall, N.J. & Collin, S.P. (2004). Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. The Journal of Experimental Biology 207, 45874594.Google Scholar
Hart, N.S., Partridge, J.C., Cuthill, I.C. & Bennett, A.T.D. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: The blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 186, 375387.Google Scholar
Hart, N.S., Theiss, S.M., Harahush, B.K. & Collin, S.P. (2011). Microspectrophotometric evidence for cone monochromacy in sharks. Naturwissenschaften 98, 193201.Google Scholar
Hausmann, F., Arnold, K.E., Marshall, N.J. & Owens, I.P. (2003). Ultraviolet signals in birds are special. Proceedings of the Royal Society B 270, 6167.Google Scholar
Haverkamp, S., Wässle, H., Duebel, J., Kuner, T., Augustine, G.J., Feng, G. & Euler, T. (2005). The primordial, blue-cone color system of the mouse retina. The Journal of Neuroscience 25, 54385445.Google Scholar
Hemmi, J.M. & Grünert, U. (1999). Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii). Visual Neuroscience 16, 291302.Google Scholar
Hendrickson, A., Djajadi, H.R., Nakamura, L., Possin, D.E. & Sajuthi, D. (2000). Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. The Journal of Comparative Neurology 424, 718730.Google Scholar
Herrero, A. & Barja, G. (1998). H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: Sites of free radical generation and mechanisms involved. Mechanism of Ageing and Development 103, 133146.Google Scholar
Hogg, C., Neveu, M., Stokkan, K.A., Folkow, L., Cottrill, P., Douglas, R., Hunt, D.M. & Jeffery, G. (2011). Arctic reindeer extend their visual range into the ultraviolet. The Journal of Experimental Biology 214, 20142019.Google Scholar
Holmes, D.J., Fluckiger, R. & Austad, S.N. (2001). Comparative biology of aging in birds: An update. Experimental Gerontology 36, 869883.Google Scholar
Hood, D.C., Cideciyan, A.V., Roman, A.J. & Jacobson, S.G. (1995). Enhanced S cone syndrome: Evidence for an abnormally large number of S cones. Vision Research 35, 14731481.Google Scholar
Huber, G., Heynen, S., Imsand, C., vom Hagen, F., Muehlfriedel, R., Tanimoto, N., Feng, Y., Hammes, H.P., Grimm, C., Peichl, L., Seeliger, M.W. & Beck, S.C. (2010). Novel rodent models for macular research. PLoS One 5, e13403.Google Scholar
Hunt, D.M., Carvalho, L.S., Cowing, J.A. & Davies, W.L. (2009a). Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society of London of London. Series B, Biological Sciences 364, 29412955.Google Scholar
Hunt, D.M., Carvalho, L.S., Cowing, J.A., Parry, J.W., Wilkie, S.E., Davies, W.L. & Bowmaker, J.K. (2007). Spectral tuning of shortwave-sensitive visual pigments in vertebrates. Photochemistry and Photobiology 83, 303310.Google Scholar
Hunt, D.M., Chan, J., Carvalho, L.S., Hokoc, J. N., Ferguson, M.C., Arrese, C.A. & Beazley, L.D. (2009b). Cone visual pigments in two species of South American marsupials. Gene 433, 5055.Google Scholar
Hunt, D.M., Cowing, J.A., Patel, R., Appukuttan, B., Bowmaker, J.K. & Mollon, J.D. (1995). Sequence and evolution of the blue cone pigment gene in Old and New World primates. Genomics 27, 535538.Google Scholar
Hunt, D.M., Cowing, J.A., Wilkie, S.E., Parry, J., Poopalasundaram, S. & Bowmaker, J.K. (2004). Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochemical and Photobiological Sciences 3, 713720.Google Scholar
Hunt, S., Cuthill, I.C., Bennett, A.T., Church, S. C. & Partridge, J.C. (2001). Is the ultraviolet waveband a special communication channel in avian mate choice? The Journal of Experimental Biology 204, 24992507.Google Scholar
Hunt, S., Cuthill, I.C., Bennett, A.T. & Griffiths, R. (1999). Preferences for ultraviolet partners in the blue tit. Animal Behavior 58, 809815.Google Scholar
Hunt, S., Cuthill, I.C., Swaddle, J.P. & Bennett, A.T.D. (1997). Ultraviolet vision and band-colour preferences in female zebra finches, Taeniopygia guttata. Animal Behavior 54, 13831392.Google Scholar
Jacobs, G.H. (1978). Spectral sensitivity and colour vision in the ground-dwelling sciurids: Results from golden mantled ground squirrels and comparisons for five species. Animal Behavior 26, 406421.Google Scholar
Jacobs, G.H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews 68, 413471.Google Scholar
Jacobs, G.H. (2013). Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—A significant trend in the evolution of mammalian vision. Visual Neuroscience 30, 3953.Google Scholar
Jacobs, G.H., Calderone, J.B., Fenwick, J.A., Krogh, K. & Williams, G.A. (2003). Visual adaptations in a diurnal rodent, Octodon degus. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 189, 347361.Google Scholar
Jacobs, G.H. & Deegan, J.F. (1992). Cone photopigments in nocturnal and diurnal procyonids. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 171, 351358.Google Scholar
Jacobs, G.H., Deegan, J.F.D., Neitz, J., Crognale, M.A. & Neitz, M. (1993). Photopigments and color vision in the nocturnal monkey, Aotus. Vision Research 33, 17731783.Google Scholar
Jacobs, G.H., Fenwick, J.A., Crognale, M.A. & Deegan, J.F. (1992). The all-cone retina of the garter snake: spectral mechanisms and photopigments. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 170, 701707.Google Scholar
Jacobs, G.H., Neitz, M., Deegan, J.F. & Neitz, J. (1996a). Trichromatic colour vision in New World monkeys. Nature 382, 156158.Google Scholar
Jacobs, G.H., Neitz, M. & Neitz, J. (1996b). Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proceedings of the Royal Society of London. Series B, Biological Sciences 263, 705710.Google Scholar
Jacobs, G.H., Williams, G.A. & Fenwick, J.A. (2004). Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse. Vision Research 44, 16151622.Google Scholar
Jacobson, S.G., Marmor, M.F., Kemp, C.M. & Knighton, R.W. (1990). SWS (blue) cone hypersensitivity in a newly identified retinal degeneration. Investigative Ophthalmology and Visual Science 31, 827838.Google Scholar
Janz, J.M. & Farrens, D.L. (2004) Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis. Journal of Biological Chemistry 279, 5588655894.Google Scholar
Jeffery, G. (1997). The albino retina: An abnormality that provides insight into normal retinal development. Trends in Neurosciences 20, 165169.Google Scholar
Jeffery, G., Darling, K. & Whitmore, A. (1994). Melanin and the regulation of mammalian photoreceptor topography. The European Journal of Neuroscience 6, 657667.Google Scholar
Juliusson, B., Bergstrom, A., Röhlich, P., Ehinger, B., van Veen, T. & Szél, A. (1994). Complementary cone fields of the rabbit retina. Investigative Ophthalmology and Visual Science 35, 811818.Google Scholar
Kawamura, S. & Kubotera, N. (2004). Ancestral loss of short wave-sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. Journal of Molecular Evolution 58, 314321.Google Scholar
Kawamura, S. & Yokoyama, S. (1996). Phylogenetic relationships among short wavelength-sensitive opsins of American chameleon (Anolis carolinensis) and other vertebrates. Vision Research 36, 27972804.Google Scholar
Kawamura, S. & Yokoyama, S. (1998). Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Research 38, 3744.Google Scholar
Kim, E.B., Fang, X., Fushan, A.A., Huang, Z., Lobanov, A.V., Han, L., Marino, S.M., Sun, X., Turanov, A.A., Yang, P., Yim, S.H., Zhao, X., Kasaikina, M.V., Stoletzki, N., Peng, C., Polak, P., Xiong, Z., Kiezun, A., Zhu, Y., Chen, Y., Kryukov, G.V., Zhang, Q., Peshkin, L., Yang, L., Bronson, R.T., Buffenstein, R., Wang, B., Han, C., Li, Q., Chen, L., Zhao, W., Sunyaev, S.R., Park, T.J., Zhang, G., Wang, J., Gladyshev, V.N. (2011). Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479, 223227.Google Scholar
Kobayashi, M., Takezawa, S., Hara, K., Yu, R.T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K. & Umesono, K. (1999). Identification of a photoreceptor cell-specific nuclear receptor. Proceedings of the National Acadamy Sciences of the United States of America 96, 48144819.Google Scholar
Kojima, D., Okano, T., Fukada, Y., Shichida, Y., Yoshizawa, T. & Ebrey, T.G. (1992). Cone visual pigments are present in gecko rod cells. Proceedings of the National Acadamy Sciences of the United States of America 89, 68416845.Google Scholar
Kram, Y.A., Mantey, S. & Corbo, J.C. (2010) Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics. PLoS One 5, e8992.Google Scholar
Kryger, Z., Galli-Resta, L., Jacobs, G.H. & Reese, B.E. (1998). The topography of rod and cone photoreceptors in the retina of the ground squirrel. Visual Neuroscience 15, 685691.Google Scholar
Lachke, S.A., Zhang, X. & Maas, R.L. (2010). Photoreceptor cell development regulation. In Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons. http://www.els.net (doi: 10.1002/9780470015902.a0000833.pub2).Google Scholar
Lee, S.C.S. & Grünert, U. (2007). Connections of diffuse bipolar cells in primate retina are biased against S-cones. The Journal of Comparative Neurology 502, 126140.Google Scholar
Lee, S.C.S., Telkes, I. & Grünert, U. (2005). S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus. The European Journal of Neuroscience 22, 437447.Google Scholar
Levenson, D.H., Fernandez-duque, E., Evans, S. & Jacobs, G.H. (2007). Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys. American Journal of Primatology 69, 757765.Google Scholar
Levenson, D.H., Ponganis, P.J., Crognale, M.A., Deegan, J.F. 2nd, Dizon, A. & Jacobs, G.H. (2006). Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 192, 833843.Google Scholar
Li, W. & DeVries, S.H. (2004). Separate blue and green cone networks in the mammalian retina. Nature Neuroscience 7, 751756.Google Scholar
Linberg, K.A., Lewis, G.P., Shaaw, C., Rex, T.S. & Fisher, S.K. (2001). Distribution of S- and M-cones in normal and experimentally detached cat retina. The Journal of Comparative Neurology 430, 343356.Google Scholar
Livesey, F.J. & Cepko, C.L. (2001). Vertebrate neural cell-fate determination: Lessons from the retina. Nature Reviews Neuroscience 2, 109118.Google Scholar
Loew, E.R. (1994). A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (Gekko gekko). Vision Research 34, 14271431.Google Scholar
Loew, E.R., Fleishman, L.J., Foster, R.G. & Provencio, I. (2002). Visual pigments and oil droplets in diurnal lizards: A comparative study of Caribbean anoles. Journal of Experimental Biology 205, 927938.Google Scholar
Loew, E.R. & Govardovskii, V.I. (2001). Photoreceptors and visual pigments in the red-eared turtle, Trachemys scripta elegans. Visual Neuroscience 18, 753757.Google Scholar
Lourenco, P.E., Fishman, G.A. & Anderson, R.J. (1983). Color vision in albino subjects. Documenta Ophthalmologica 55, 341350.Google Scholar
Lu, A., Ng, L., Ma, M., Kefas, B., Davies, T.F., Hernandez, A., Chan, C.C. & Forrest, D. (2009). Retarded developmental expression and patterning of retinal cone opsins in hypothyroid mice. Endocrinology 150, 15361544.Google Scholar
Lukats, A., Dkhissi-Benyahya, O., Szepessy, Z., Röhlich, P., Vigh, B., Bennett, N.C., Cooper, H.M. & Szél, A. (2002). Visual pigment coexpression in all cones of two rodents, the Siberian hamster, and the pouched mouse. Investigative Ophthalmology and Visual Science 43, 24682473.Google Scholar
Lukats, A., Szabo, A., Röhlich, P., Vigh, B. & Szél, A. (2005). Photopigment coexpression in mammals: Comparative and developmental aspects. Histology and Histopathology 20, 551574.Google Scholar
Lyubarsky, A.L., Falsini, B., Pennesi, M. E., Valentini, P. & Pugh, E.N. Jr. (1999). UV- and midwave-sensitive cone-driven retinal responses of the mouse: A possible phenotype for coexpression of cone photopigments. The Journal of Neuroscience 19, 442455.Google Scholar
Ma, J., Znoiko, S., Othersen, K.L., Ryan, J.C., Das, J., Isayama, T., Kono, M., Oprian, D.D., Corson, D.W., Cornwall, M.C., Cameron, D.A., Harosi, F.I., Makino, C.L. & Crouch, R.K. (2001a). A visual pigment expressed in both rod and cone photoreceptors. Neuron 32, 451461.Google Scholar
Ma, J.X., Kono, M., Xu, L., Das, J., Ryan, J.C., Hazard, E.S. 3rd, Oprian, D.D. & Crouch, R.K. (2001b). Salamander UV cone pigment: Sequence, expression, and spectral properties. Visual Neuroscience 18, 393399.Google Scholar
Machovsky Capuska, G.E., Huynen, L., Lambert, D. & Raubenheimer, D. (2011). UVS is rare in seabirds. Vision Research 51, 13331337.Google Scholar
Mandelman, T. & Sivak, J.G. (1983). Longitudinal chromatic aberration of the vertebrate eye. Vision Research 23, 15551559.Google Scholar
Martin, P.R. & Grünert, U. (1999). Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: Comparison of New World and Old World monkeys. The Journal of Comparative Neurology 406, 114.Google Scholar
Martin, P.R., Grünert, U., Chan, T.L. & Bumsted, K. (2000). Spatial order in short-wavelength-sensitive cone photoreceptors: A comparative study of the primate retina. Journal of the Optical Society of America A 17, 557567.Google Scholar
Martin, P.R., Grünert, U., Chan, T.L. & Ghosh, K.K. (2001). Retinal pathways for colour vision: studies of short-wavelength sensitive (“blue”) cones and their connections in primate retina. Color Research and Application 26, S112S117.Google Scholar
Martin Schaefer, H., Schaefer, V. & Vorobyev, M. (2007). Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? American Naturalist 169, S159S169.Google Scholar
Matsui, H., Lin, L.R., Ho, Y.S. & Reddy, V.N. (2003). The effect of up- and downregulation of MnSOD enzyme on oxidative stress in human lens epithelial cells. Investigative Ophthalmology and Visual Science 44, 34673475.Google Scholar
Mears, A.J., Kondo, M., Swain, P.K., Takada, Y., Bush, R.A., Saunders, T.L., Sieving, P.A. & Swaroop, A. (2001). Nrl is required for rod photoreceptor development. Nature Genetics 29, 447452.Google Scholar
Meredith, R.W., Gatesy, J., Emerling, C.A., York, V.M. & Springer, M.S. (2013). Rod monochromacy and the coevolution of Cetacean retinal opsins. PLoS Genetics 9, e1003432.Google Scholar
Mollon, J.D. (1989). “Tho’ she kneel’d in that place where they grew...” The uses and origins of primate colour vision. The Journal of Experimental Biology 146, 2138.Google Scholar
Mooney, V.L., Szundi, I., Lewis, J.W., Yan, E.C.Y. & Kliger, D.S. (2012). Schiff base protonation changes in Siberian hamster ultraviolet cone pigment photointermediates. Biochemistry 51, 26302637.Google Scholar
Moritz, G.L., Lim, N.T.-L., Netz, M., Peichl, L. & Dominy, N.J. (2013). Expression and evolution of short wavelength sensitive opsins in colugos: A nocturnal lineage that informs debate on primate origins. Evolutionary Biology. doi: 10.1007/s11692-013-9230-y.Google Scholar
Mullen, P. & Pohland, G. (2008). Studies on UV reflection in feathers of some 1000 bird species: Are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? Ibis 150, 5968.Google Scholar
Müller, B., Glösmann, M., Peichl, L., Knop, G. C., Hagemann, C. & Ammermüller, J. (2009). Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One 4, e6390.Google Scholar
Müller, B., Goodman, S.M. & Peichl, L. (2007). Cone photoreceptor diversity in the retinas of fruit bats (Megachiroptera). Brain, Behavior and Evolution 70, 90104.Google Scholar
Müller, B. & Peichl, L. (1989). Topography of cones and rods in the tree shrew retina. The Journal of Comparative Neurology 282, 581594.Google Scholar
Nasonkin, I., Cogliati, T. & Swaroop, A. (2010). Photoreceptor Development: Early steps/fate. In Encyclopedia of the Eye, Vol. 3, ed. Dartt, D.A., pp. 332339. Oxford, UK: Academic Press.Google Scholar
Nathans, J. (1990). Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 29, 97469752.Google Scholar
Neitz, M. & Neitz, J. (2001). The uncommon retina of the common house mouse. Trends in Neurosciences 24, 248249.CrossRefGoogle ScholarPubMed
Nemec, P., Cvekova, P., Burda, H., Benada, O. & Peichl, L. (2007). Visual systems and the role of vision in subterranean rodents: Diversity of retinal properties and visual system designs. In Subterranean Rodents—News from Underground, ed. Begall, S., Burda, H. & Schleich, C.E., pp. 129160. Heidelberg, Germany: Springer.Google Scholar
Newman, L.A. & Robinson, P.R. (2005). Cone visual pigments of aquatic mammals. Visual Neuroscience 22, 873879.Google Scholar
Newman, L.A. & Robinson, P.R. (2006). The visual pigments of the West Indian manatee (Trichechus manatus). Vision Research 46, 33263330.Google Scholar
Ng, L., Hurley, J.B., Dierks, B., Srinivas, M., Salto, C., Vennstrom, B., Reh, T.A. & Forrest, D. (2001). A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nature Genetics 27, 9498.Google Scholar
Ng, L., Ma, M., Curran, T. & Forrest, D. (2009). Developmental expression of thyroid hormone receptor β2 protein in cone photoreceptors in the mouse. Neuroreport 20, 627631.Google Scholar
Niessner, C., Denzau, S., Gross, J.C., Peichl, L., Bischof, H.J., Fleissner, G., Wiltschko, W. & Wiltschko, R. (2011). Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS One 6, e20091.Google Scholar
O’Brien, J.J., Chen, X., MacLeish, P.R., O’Brien, J. & Massey, S.C. (2012). Photoreceptor coupling mediated by connexin36 in the primate retina. The Journal of Neuroscience 32, 46754687.Google Scholar
O’Brien, J., Ripps, H. & Al-Ubaidi, M.R. (1997). Molecular cloning of a rod opsin cDNA from the skate retina. Gene 193, 141150.Google Scholar
Ödeen, A. & Håstad, O. (2003). Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Molecular Biology and Evolution 20, 855861.Google Scholar
Ödeen, A. & Håstad, O. (2010). Pollinating birds differ in spectral sensitivity. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 196, 9196.Google Scholar
Ödeen, A. & Håstad, O. (2013). The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evolutionary Biology 13, 36.Google Scholar
Ödeen, A., Håstad, O. & Alström, P. (2010). Evolution of ultraviolet vision in shorebirds (Charadriiformes). Biology Letters 6, 370374.Google Scholar
Ödeen, A., Håstad, O. & Alström, P. (2011). Evolution of ultraviolet vision in the largest avian radiation—The passerines. BMC Evolutionary Biology 11, 313.Google Scholar
Ödeen, A., Pruett-Jones, S., Driskell, A.C., Armenta, J.K. & Håstad, O. (2012). Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proceedings of the Royal Society of London. Series B, Biological Sciences 279, 12691276.Google Scholar
Ogburn, C.E., Carlberg, K., Ottinger, M.A., Holmes, D.J., Martin, G.M. & Austad, S.N. (2001). Exceptional cellular resistance to oxidative damage in long-lived birds requires active gene expression. Journal of Gerontology: Biological Sciences 56, B468B474.Google Scholar
Ortín-Martínez, A., Jiménez-López, M., Nadal-Nicolás, F.M., Salinas-Navarro, M., Alarcón-Martínez, L., Sauvé, Y., Villegas-Pérez, M.P., Vidal-Sanz, M. & Agudo-Barriuso, M. (2010). Automated quantification and topographical distribution of the whole population of S- and L-cones in adult albino and pigmented rats. Investigative Ophthalmology and Visual Science 51, 31713183.CrossRefGoogle ScholarPubMed
Palacios, A.G., Bozinovic, F., Vielma, A., Arrese, C.A., Hunt, D.M. & Peichl, L. (2010). Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839). The Journal of Comparative Neurology 518, 15891602.Google Scholar
Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R.E., Yamamoto, M. & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739745.Google Scholar
Parry, J.W., Poopalasundaram, S., Bowmaker, J.K. & Hunt, D.M. (2004). A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. Biochemistry 43, 80148020.Google Scholar
Pearn, S.M., Bennett, A.T. & Cuthill, I.C. (2001). Ultraviolet vision, fluorescence and mate choice in a parrot, the budgerigar Melopsittacus undulatus. Proceedings of the Royal Society of London. Series B, Biological Sciences 268, 22732279.Google Scholar
Peichl, L. (2005). Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 287A, 10011012.Google Scholar
Peichl, L., Behrmann, G. & Kröger, R.H. (2001a). For whales and seals the ocean is not blue: A visual pigment loss in marine mammals. The European Journal of Neuroscience 13, 15201528.Google Scholar
Peichl, L., Chavez, A.E., Ocampo, A., Mena, W., Bozinovic, F. & Palacios, A.G. (2005a). Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, Octodontidae). The Journal of Comparative Neurology 486, 197208.Google Scholar
Peichl, L., Dubielzig, R.R., Kubber-Heiss, A., Schubert, C. & Ahnelt, P.K. (2005b). Retinal cone types in brown bears and the polar bear indicate dichromatic color vision. Investigative Ophthalmology and Visual Science 46, E-Abstract 4539.Google Scholar
Peichl, L., Künzle, H. & Vogel, P. (2000). Photoreceptor types and distributions in the retinae of insectivores. Visual Neuroscience 17, 937948.Google Scholar
Peichl, L., Nemec, P. & Burda, H. (2004). Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae). The European Journal of Neuroscience 19, 15451558.Google Scholar
Peichl, L. & Pohl, B. (2000). Cone types and cone/rod ratios in the crab-eating raccoon and coati (Procyonidae). Investigative Ophthalmology and Visual Science 41, S494, Abstract no. 2630.Google Scholar
Peichl, L., Rakotondraparany, F. & Kappeler, P. (2001b). Photoreceptor types and distributions in nocturnal and diurnal Malagasy primates. Investigative Ophthalmology and Visual Science 42, S48, Abstract no. 270.Google Scholar
Peichl, L., Sandmann, D. & Boycott, B.B. (1998). Comparative anatomy and function of mammalian horizontal cells. In Development and Organization of the Retina: From Molecules to Function, ed. Chalupa, L.M. & Finlay, B.L., pp. 147172. New York, NY: Plenum Press.Google Scholar
Perelman, P., Johnson, W.E., Roos, C., Seuanez, H.N., Horvath, J.E., Moreira, M.A., Kessing, B., Pontius, J., Roelke, M., Rumpler, Y., Schneider, M.P., Silva, A., O’Brien, S.J. & Pecon-Slattery, J. (2011). A molecular phylogeny of living primates. PLoS Genetics 7, e1001342.Google Scholar
Perry, G.H., Martin, R.D. & Verrelli, B.C. (2007). Signatures of functional constraint at aye-aye opsin genes: The potential of adaptive color vision in a nocturnal primate. Molecular Biology and Evolution 24, 19631970.Google Scholar
Pessoa, C.N., Santiago, L.A., Santiago, D.A., Machado, D.S., Rocha, F.A.F., Ventura, D.F., Hokoc, J.N., Pazos-Moura, C.C., Wondisford, F.E., Gardino, P.F. & Ortiga-Carvalho, T.M. (2008). Thyroid hormone Action is required for normal cone opsin expression during mouse retinal development. Investigative Ophthalmology and Visual Science 49, 20392045.Google Scholar
Petry, H.M., Erichsen, J.T. & Szél, A. (1993). Immunocytochemical identification of photoreceptor populations in the tree shrew retina. Brain Research 616, 344350.Google Scholar
Petry, H.M. & Harosi, F.I. (1990). Visual pigments of the tree shrew (Tupaia belangeri) and greater galago (Galago crassicaudatus): A microspectrophotometric investigation. Vision Research 30, 839851.Google Scholar
Puller, C. & Haverkamp, S. (2011). Bipolar cell pathways for color vision in non-primate dichromats. Visual Neuroscience 28, 5160.Google Scholar
Raine, J.C. & Hawryshyn, C.W. (2009). Changes in thyroid hormone reception precede SWS1 opsin downregulation in trout retina. The Journal of Experimental Biology 212, 27812788.Google Scholar
Raymond, P.A. & Barthel, L.K. (2004). A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. International Journal of Developmental Biology 48, 935945.Google Scholar
Reitner, A., Sharpe, L.T. & Zrenner, E. (1991). Is colour vision possible with only rods and blue-sensitive cones? Nature 352, 798800.Google Scholar
Rogers, C.S., Chan, L.M., Sims, Y.S., Byrd, K.D., Hinton, D.L. & Twining, S.S. (2004). The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Expimental Eye Research 78, 10071014.Google Scholar
Röhlich, P., van Veen, T. & Szél, A. (1994). Two different visual pigments in one retinal cone cell. Neuron 13, 11591166.Google Scholar
Rohrer, B., Schaeffel, F. & Zrenner, E. (1992). Longitudinal chromatic aberration and emmetropization: Results from the chicken eye. Journal of Physiology 449, 363376.Google Scholar
Roman, A.J. & Jacobson, S.G. (1991). S cone-driven but not S cone-type electroretinograms in the enhanced S cone syndrome. Expimental Eye Research 53, 685690.Google Scholar
Sansom, I.J., Smith, M.P. & Smith, M.M. (1996). Scales of thelodont and shark-like fishes from the Ordovician. Nature 379, 628630.Google Scholar
Schiviz, A.N., Ruf, T., Kuebber-Heiss, A., Schubert, C. & Ahnelt, P.K. (2008). Retinal cone topography of artiodactyl mammals: Influence of body height and habitat. The Journal of Comparative Neurology 507, 13361350.Google Scholar
Schleich, C.E., Vielma, A., Glösmann, M., Palacios, A.G. & Peichl, L. (2010). Retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Ctenomys): Morphology, topography, and spectral sensitivity. The Journal of Comparative Neurology 518, 40014015.Google Scholar
Shand, J., Davies, W.L., Thomas, N., Balmer, L., Cowing, J.A., Pointer, M., Carvalho, L.S., Trezise, A.E., Collin, S.P., Beazley, L.D. & Hunt, D.M. (2008). The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. The Journal of Expimental Biology 211, 14951503.Google Scholar
Sherry, D.M., Bui, D.D. & Degrip, W.J. (1998). Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina. Visual Neuroscience 15, 11751187.Google Scholar
Shi, Y., Radlwimmer, F.B. & Yokoyama, S. (2001). Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proceedings of the National Academy of Sciences of the United States of America 98, 1173111736.Google Scholar
Siitari, H., Honkavaara, J. & Viitala, J. (1999). Ultraviolet reflection of berries attracts foraging birds. A laboratory study with redwings (Turdus iliacus) and bilberries (Vaccinium myrtillus). Proceedings of the Royal Society of London. Series B, Biological Sciences 266, 21252129.Google Scholar
Sillman, A.J., Carver, J.K. & Loew, E.R. (1999). The photoreceptors and visual pigments in the retina of a boid snake, the ball python (Python regius). The Journal of Expimental Biology 202, 19311938.Google Scholar
Sillman, A.J., Govardovskii, V.I., Röhlich, P., Southard, J.A. & Loew, E.R. (1997). The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): A microspectrophotometric, scanning electron microscopic and immunocytochemical study. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 181, 89101.Google Scholar
Sillman, A.J., Johnson, J.L. & Loew, E.R. (2001). Retinal photoreceptors and visual pigments in Boa constrictor imperator. Journal of Expimental Zoology 290, 359365.Google Scholar
Starace, D.M. & Knox, B.E. (1998). Cloning and expression of a Xenopus short wavelength cone pigment. Experimental Eye Research 67, 209220.Google Scholar
Stell, W.K. & Lightfoot, D.O. (1975). Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. The Journal of Comparative Neurology 159, 473501.Google Scholar
Summers, G. (1996). Vision in albinism. Transactions of the American Ophthalmological Society 94, 10951155.Google Scholar
Swaroop, A., Kim, D. & Forrest, D. (2010). Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nature Reviews Neuroscience 11, 563576.Google Scholar
Swaroop, A., Xu, J.Z., Pawar, H., Jackson, A., Skolnick, C. & Agarwal, N. (1992). A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proceedings of the National Academy of Sciences of the United States of America 89, 266270.Google Scholar
Szél, A., Csorba, G., Caffe, A.R., Szél, G., Röhlich, P. & van Veen, T. (1994a). Different patterns of retinal cone topography in two genera of rodents, Mus and Apodemus. Cell and Tissue Research 276, 143150.Google Scholar
Szél, A., Lukats, A., Fekete, T., Szepessy, Z. & Röhlich, P. (2000). Photoreceptor distribution in the retinas of subprimate mammals. Journal of the Optical Society of America A 17, 568579.Google Scholar
Szél, A., Röhlich, P., Caffe, A.R., Juliusson, B., Aguirre, G. & van Veen, T. (1992). Unique topographic separation of two spectral classes of cones in the mouse retina. The Journal of Comparative Neurology 325, 327342.Google Scholar
Szél, A., Röhlich, P., Caffé, R. & van Veen, T. (1996). Distribution of cone photoreceptors in the mammalian retina. Microscopy Research and Technique 35, 445462.Google Scholar
Szél, A., van Veen, T. & Röhlich, P. (1994b). Retinal cone differentiation. Nature 370, 336.Google Scholar
Szepessy, Z., Lukáts, A., Fekete, T., Barsi, A., Röhlich, P. & Szél, A. (2000). Cone differentiation with no photopigment coexpression. Investigative Ophthalmology and Visual Science 41, 31713175.Google Scholar
Tada, T., Altun, A. & Yokoyama, S. (2009). Evolutionary replacement of UV vision by violet vision in fish. Proceedings of the National Academy of Sciences of the United States of America 106, 1745717462.Google Scholar
Takahashi, Y. & Yokoyama, S. (2005). Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis. Genetics 171, 11531160.Google Scholar
Tan, Y., Yoder, A.D., Yamashita, N. & Li, W.H. (2005). Evidence from opsin genes rejects nocturnality in ancestral primates. Proceedings of the National Academy of Sciences of the United States of America 102, 1471214716.Google Scholar
Taniguchi, Y., Hisatomi, O., Yoshida, M. & Tokunaga, F. (1999). Evolution of visual pigments in geckos. FEBS Letters 445, 3640.Google Scholar
Temple, S.E. (2011). Why different regions of the retina have different spectral sensitivities: A review of mechanisms and functional significance of intraretinal variability in spectral sensitivity in vertebrates. Visual Neuroscience 28, 281293.Google Scholar
Theiss, S.M., Davies, W.I., Collin, S.P., Hunt, D.M. & Hart, N.S. (2012). Cone monochromacy and visual pigment spectral tuning in wobbegong sharks. Biology Letters 8, 10191022.Google Scholar
Theiss, S.M., Lisney, T.J., Collin, S.P. & Hart, N.S. (2007). Colour vision and visual ecology of the blue-spotted maskray, Dasyatis kuhlii Müller & Henle, 1814. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 193, 6779.Google Scholar
Tratsk, K.S. & Thanos, S. (2003). UV irradiation causes multiple cellular changes in cultured human retinal pigment epithelium cells. Graefe‘s Archive for Clinical and Experimental Ophthalmology 241, 852859.Google Scholar
Underwood, T.J. & Sealy, S.G. (2008). UV reflectance of eggs of brown-headed cowbirds (Molothrus ater) and accepter and rejecter hosts. Journal of Ornithology 149, 313321.Google Scholar
von Schantz, M., Argamaso-Hernan, S.M., Szél, A. & Foster, R.G. (1997). Photopigments and photoentrainment in the Syrian golden hamster. Brain Research 770, 131138.Google Scholar
Wakefield, M.J., Anderson, M., Chang, E., Wei, K.J., Kaul, R., Graves, J.A., Grutzner, F. & Deeb, S.S. (2008). Cone visual pigments of monotremes: Filling the phylogenetic gap. Visual Neuroscience 25, 257264.Google Scholar
Walls, G. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, MI: Cranbrook Institute of Science.Google Scholar
Wang, D., Oakley, T., Mower, J., Shimmin, L. C., Yim, S., Honeycutt, R.L., Tsao, H. & Wen-Hsiung Li, W.-L. (2004). Molecular evolution of bat color vision genes. Molecular Biology and Evolution 21, 295302.Google Scholar
Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Neuroscience 19, 747757.Google Scholar
Weitz, C.J., Miyake, Y., Shinzato, K., Montag, E., Zrenner, E., Went, L.N. & Nathans, J. (1992a). Human tritanopia associated with two amino acid substitutions in the blue-sensitive opsin. American Journal of Human Genetics 50, 498507.Google Scholar
Weitz, C.J., Went, L.N. & Nathans, J. (1992b). Human tritanopia associated with a third amino acid substitution in the blue-sensitive visual pigment [letter]. American Journal of Human Genetics 51, 444446.Google Scholar
Wikler, K.C. & Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. The Journal of Neuroscience 10, 33903401.Google Scholar
Wilkie, S.E., Robinson, P.R., Cronin, T.W., Poopalasundaram, S., Bowmaker, J.K. & Hunt, D.M. (2000). Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments. Biochemistry 39, 78957901.Google Scholar
Wilkie, S.E., Vissers, P.M., Das, D., Degrip, W.J., Bowmaker, J.K. & Hunt, D.M. (1998). The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochemical Journal 330, 541547.Google Scholar
Williams, G.A., Calderone, J.B. & Jacobs, G.H. (2005). Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae). Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 191, 125134.Google Scholar
Williams, G.A. & Jacobs, G.H. (2008). Absence of functional short-wavelength sensitive cone pigments in hamsters (Mesocricetus). Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 194, 429439.Google Scholar
Wiltschko, R., Stapput, K., Thalau, P. & Wiltschko, W. (2010). Directional orientation of birds by the magnetic field under different light conditions. Journal of the Royal Society Interface 7, S163S177.Google Scholar
Wiltschko, W. & Wiltschko, R. (2007). Magnetoreception in birds: Two receptors for two different tasks. Journal of Ornithology 148, S61S76.Google Scholar
Wright, M.W. & Bowmaker, J.K. (2001). Retinal photoreceptors of paleognathous birds: The ostrich (Struthio camelus) and rhea (Rhea americana). Vision Research 41, 112.Google Scholar
Xiao, M. & Hendrickson, A. (2000). Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones. The Journal of Comparative Neurology 425, 545559.Google Scholar
Yokoyama, S. & Blow, N.S. (2001). Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko. Gene 276, 117125.Google Scholar
Yokoyama, S., Radlwimmer, F.B. & Blow, N.S. (2000). Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proceedings of the National Academy of Sciences of the United States of America 97, 73667371.Google Scholar
Yokoyama, S. & Shi, Y. (2000). Genetics and evolution of ultraviolet vision in vertebrates. FEBS Letters 486, 167172.Google Scholar
Yokoyama, S., Starmer, W.T., Takahashi, Y. & Tada, T. (2006). Tertiary structure and spectral tuning of UV and violet pigments in vertebrates. Gene 365, 95103.Google Scholar
Yokoyama, S., Takenaka, N., Agnew, D.W. & Shoshani, J. (2005). Elephants and human color-blind deuteranopes have identical sets of visual pigments. Genetics 170, 335344.Google Scholar
Zeiss, C.J., Schwab, I.R., Murphy, C.J. & Dubielzig, R.W. (2011). Comparative retinal morphology of the platypus. Journal of Morphology 272, 949957.Google Scholar