Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T14:23:13.731Z Has data issue: false hasContentIssue false

Subcortical connections of subdivisions of inferior temporal cortex in squirrel monkeys

Published online by Cambridge University Press:  02 June 2009

G. E. Steele
Affiliation:
Department of Psychology, University of Alabama at Birmingham, Birmingham
R. E. Weller
Affiliation:
Department of Psychology, University of Alabama at Birmingham, Birmingham

Abstract

On the basis of cortical connections and architectonics, inferior temporal (IT) cortex of squirrel monkeys consists of a caudal, prestriate-recipient region, ITC; a rostral region, ITR; and possibly an intermediate region along the border of ITC and ITR, ITI (Weller & Steele, 1992). ITC contains dorsal (ITCd) and ventral (ITCv) areas. The subcortical connections of these subdivisions of IT cortex were determined in the present study from the results of cortical injections of wheat-germ agglutinin conjugated to horseradish peroxidase, [3H]-amino acids and fast blue. ITC and ITR receive afferents from the locus coeruleus, dorsal raphe, nucleus annularis, central superior nucleus, pontine reticular formation, lateral hypothalamus, paracentral nucleus, and central medial nucleus; send efferents to the superior colliculus, reticular nucleus, and striatum; and have both afferent and efferent connections with the pretectum, pulvinar, claustrum, amygdala, and basal nucleus of Meynert. ITC and ITR have different patterns of connections with a number of subcortical structures, including the pulvinar and amygdala. Injections in ITC strongly label multiple nuclei of the inferior pulvinar and the medial division of the lateral pulvinar (PLM), and moderately label the medial pulvinar (PM), whereas injections in ITR strongly label PM and moderately label PLM. Injections in ITC label sparse projections to the lateral nucleus of the amygdala, in contrast to injections in ITR that label strong projections to the lateral and basal nuclei of the amygdala. Injections in “IT” produce a pattern of subcortical label that has some features of that observed from injections in ITC and that observed from injections in ITR. Although most of the connections of ITCd and ITCv appear similar, only injections involving ITCd label the middle nucleus of the inferior pulvinar (PIM).

Comparison of the subcortical connections of subdivisions of IT cortex in squirrel monkeys and what is presently known of the subcortical connections of subdivisions of IT cortex in macaque monkeys supports the previous suggestion that ITC of squirrel monkeys may be comparable to area TEO of macaques, IT, may be comparable to posterior area TE, and ITR may be comparable to anterior area TE (Weller & Steele, 1992).

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J.M., Kaas, J.H., Lane, R.H. & Miezln, F.M. (1972). A representation of the visual field in the inferior nucleus of the pulvinar in the owl monkey (Aotus trivirgatus). Brain Research 40, 291302.CrossRefGoogle ScholarPubMed
Baizer, J.S., Desimone, R. & Ungerleider, L.G. (1993). Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Visual Neuroscience 10, 5972.CrossRefGoogle ScholarPubMed
Baizer, J.S., Ungerleider, L.G. & Desimone, R. (1991). Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. Journal of Neuroscience 11, 168190.CrossRefGoogle Scholar
Baleydier, C. & Morel, A. (1992). Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey. Visual Neuroscience 8, 391405.CrossRefGoogle ScholarPubMed
Baylis, G.C., Rolls, E.T. & Leonard, C.M. (1987). Functional subdivisions of the temporal lobe neocortex. Journal of Neuroscience 7, 330342.CrossRefGoogle ScholarPubMed
Bender, D.B. (1981). Retinotopic organization of macaque pulvinar. Journal of Neurophysiology 46, 672693.CrossRefGoogle ScholarPubMed
Benevento, L.A. & Davis, B. (1977). Topographical projections of the prestriate cortex to the pulvinar nuclei in the macaque monkey: An autoradiographic study. Experimental Brain Research 30, 405424.Google Scholar
Benevento, L.A. & Rezak, M. (1976). The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatto): An autoradiographic study. Brain Research 108, 124.CrossRefGoogle Scholar
Blake, L., Jarvis, C.D. & Mishkin, M. (1977). Pattern discrimination thresholds after partial inferior temporal or lateral striate lesions in monkeys. Brain Research 120, 209220.CrossRefGoogle ScholarPubMed
Boussaoud, D., Ungerleider, L.G. & Desimone, R. (1992). Subcortical connections of visual areas MST and FST in macaques. Visual Neuroscience 9, 291302.CrossRefGoogle ScholarPubMed
Boussaoud, D., Desimone, R. & Ungerleider, L.G. (1991). Visual topography of area TEO in the macaque. Journal of Comparative Neurology 306, 554575.CrossRefGoogle ScholarPubMed
Boussaoud, D., Ungerleider, L.G. & Desimone, R. (1990). Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual area in the macaque. Journal of Comparative Neurology 296, 462495.CrossRefGoogle ScholarPubMed
Brodal, P. (1978). The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101, 251283.CrossRefGoogle ScholarPubMed
Brodal, P. & Bjaalie, J.G. (1992). Organization of the pontine nuclei. Neuroscience Research 13, 83118.CrossRefGoogle ScholarPubMed
Chalupa, L. (1991). Visual function of the pulvinar. In Vision and Visual Dysfunction, Vol. 4: The Neural Basis of Visual Function, ed. Leventhal, A.G., pp. 140159. New York: Macmillan Press.Google Scholar
Cooper, J.R., Bloom, F.E. & Roth, R.H. (1986). The Biochemical Basis of Neuropharmacology. New York: Oxford University Press.Google Scholar
Cowan, W.M., Gottlieb, D.I., Hendrickson, A.E., Price, J.L. & Woolsey, T.A. (1972). The autoradiographic demonstration of axonal connections in the central nervous system. Brain Research 37, 2151.CrossRefGoogle ScholarPubMed
Cowey, A. (1964). Projection of the retina on to striate cortex and prestriate cortex in the squirrel monkey, Saimiri sciureus. Journal of Neurophysiology 27, 366393.CrossRefGoogle Scholar
Cowey, A. & Gross, C.G. (1970). Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Experimental Brain Research 11, 128144.CrossRefGoogle ScholarPubMed
Curcio, C.A. & Harting, J.K. (1978). Organization of pulvinar af-ferents to area 18 in the squirrel monkey: Evidence for stripes. Brain Research 143, 155161.CrossRefGoogle ScholarPubMed
Cusick, C.G. (1988). Anatomical organization of the superior colliculus in monkeys: Corticotectal pathways for visual and visuomotor functions. In Progress in Brain Research, Vol. 75, ed. Hicks, T.P. & Benedek, G., pp. 115. New York: Elsevier.Google Scholar
Cusick, C.G. & Kaas, J.H. (1988). Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys. Visual Neuroscience 1, 211237.CrossRefGoogle ScholarPubMed
Cynader, M. & Berman, N. (1972). Receptive-field organization of monkey superior colliculus. Journal of Neurophysiology 35, 187201.CrossRefGoogle ScholarPubMed
Dean, A.F., Bunch, S.T., Tolhurst, D.J. & Lewis, P.R. (1982). The distribution of acetylcholinesterase in the lateral geniculate nucleus of the cat and monkey. Brain Research 244, 123134.CrossRefGoogle Scholar
Dean, P. (1982). Visual behavior in monkeys with inferotemporal lesions. In Advances in the Analysis of Visual Behavior, ed. Ingle, D.J., Mansfield, J.W. & Goodale, M.A., pp. 587628. Cambridge, Massachusetts: MIT Press.Google Scholar
Desimone, R., Fleming, J. & Gross, C.G. (1980). Prestriate afferents to inferior temporal cortex: An HRP study. Brain Research 184, 4155.CrossRefGoogle ScholarPubMed
Desimone, R. & Gross, C.G. (1979). Visual areas in the temporal cortex of the macaque. Brain Research 178, 363380.CrossRefGoogle ScholarPubMed
Desimone, R. & Ungerleider, L.G. (1989). Neural mechanisms of visual processing in monkeys. In Handbook of Neuropsychology, Vol. 2, ed. Boller, F. & Grafman, J., pp. 267299. New York: Elsevier.Google Scholar
Deyoe, E.A. & Van Essen, D.C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience Abstracts 11, 219226.CrossRefGoogle ScholarPubMed
Dick, A., Kaske, A. & Creutzfeldt, O.D. (1991). Topographical and topological organization of the thalamocortical projection to the striate and prestriate cortex in the marmoset (Callithrix jacchus). Experimental Brain Research 84, 233253.CrossRefGoogle Scholar
Doty, R.W. (1983). Nongeniculate afferents to striate cortex in macaques. Journal of Comparative Neurology 218, 159173.CrossRefGoogle ScholarPubMed
Emmers, R. & Akert, K. (1963). A Stereotaxic Atlas of the Brain of the Squirrel Monkey (Saimiri sciureus). Madison, Wisconsin: University of Wisconsin Press.Google Scholar
Felleman, D.J., Knierim, J.J. & Van Essen, D.C. (1986). Multiple topographic and non-topographic subdivisions of the temporal lobe as revealed by the connections of area V4 in the macaque. Society for Neuroscience Abstracts 12, 1182.Google Scholar
Fenstemaker, S.B., Albright, T.D. & Gross, C.G. (1985). Organization and neural properties of visual area TEO. Society for Neuroscience Abstracts 11, 1012.Google Scholar
Fenstemaker, S.B., Olson, C.R. & Gross, C.G. (1984). Afferent connections of macaque visual areas V4 and TEO. ARVO Abstracts 25, 213.Google Scholar
Fenstemaker, S.B., Sauceda, A.M., Albright, T.D. & Gross, C.G. (1986). A comparison of subcortical afferents to visual cortical areas V4, TEO and IT in the macaque. Society for Neuroscience Abstracts 12, 1364.Google Scholar
Freedman, R., Foote, S.L. & Bloom, F.E. (1975). Histochemical characterization of a neocortical projection of the nucleus locus coeruleus in the squirrel monkey. Journal of Comparative Neurology 164, 209232.CrossRefGoogle ScholarPubMed
Fries, W. (1984). Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase. Journal of Comparative Neurology 230, 5576.CrossRefGoogle Scholar
Fuster, J.M. (1990). Inferotemporal units in selective visual attention and short-term memory. Journal of Neurophysiology 64, 681697.CrossRefGoogle ScholarPubMed
Gallyas, F. (1979). Silver staining of myelin by means of physical development. Neurological Research 1, 203209.CrossRefGoogle ScholarPubMed
Gatter, K.C. & Powell, T.P.S. (1977). The projection of the locus coeruleus upon the neocortex in the macaque monkey. Neuroscience 2, 441445.CrossRefGoogle ScholarPubMed
Gibson, A.R., Hansma, J.C., Houk, J.C. & Robinson, F.R. (1984). A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Research 298, 235241.CrossRefGoogle ScholarPubMed
Glickstein, M., Cohen, J.L., Dixon, B., Gibson, A., Hollins, M., Labossiere, E. & Robinson, F. (1980). Corticopontine visual projections in macaque monkeys. Journal of Comparative Neurology 190, 209229.CrossRefGoogle ScholarPubMed
Glickstein, M., May, J.G. III, & Mercier, B.E. (1985). Corticopontine projection in the macaque: The distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. Journal of Comparative Neurology 235, 343359.CrossRefGoogle ScholarPubMed
Graham, J., Lin, C.-S., & Kaas, J.H. (1979). Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus. Journal of Comparative Neurology 187, 557580.CrossRefGoogle ScholarPubMed
Gross, C.G. (1973). Visual functions of inferotemporal cortex. In Handbook of Sensory Physiology, Vol. 7, Part3B, ed. Jung, R., pp. 451482. Berlin: Springer-Verlag.Google Scholar
Gross, C.G., Rocha-Miranda, C.E. & Bender, D.B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology 35, 96111.CrossRefGoogle ScholarPubMed
Holländer, H. (1974). Projections from the striate cortex to the diencephalon in the squirrel monkey (Saimiri sciureus). A light-microscopic radioautographic study following intracortical injection of [3H]-leucine. Brain Research 155, 425440.Google Scholar
Hubbard, J.E. & Dicarlo, V. (1973). Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). I. The locus coeruleus. Journal of Comparative Neurology 147, 553566.CrossRefGoogle Scholar
Hubbard, J.E. & Dicarlo, V. (1974). Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). III. Serotonin-containing groups. Journal of Comparative Neurology 153, 385398.CrossRefGoogle Scholar
Huerta, M.F., Krubitzer, L.A. & Kaas, J.H. (1986). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. Journal of Comparative Neurology 253, 415439.CrossRefGoogle ScholarPubMed
Huerta, M.F., Krubitzer, L.A. & Kaas, J.H. (1987). The frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II. Cortical connections. Journal of Comparative Neurology 265, 332361.CrossRefGoogle ScholarPubMed
Hutchins, B. & Weber, J.T. (1983). A rapid myelin stain for frozen sections: Modification of the Heidenhain procedure. Journal of Neuroscience Methods 7, 289294.CrossRefGoogle ScholarPubMed
Hutchins, B. & Weber, J.T. (1985). The pretectal complex of the monkey: A reinvestigation of the morphology and retinal terminations. Journal of Comparative Neurology 232, 425442.CrossRefGoogle ScholarPubMed
Iwai, E. & Mishkin, M. (1969). Further evidence on the locus of the visual area in the temporal lobe of the monkey. Experimental Neurology 25, 585594.CrossRefGoogle ScholarPubMed
Iwai, E. & Yukie, M. (1987). Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta, and M. fascicularis). Journal of Comparative Neurology 261, 362387.CrossRefGoogle ScholarPubMed
Iwai, E., Yukie, M., Suyama, H. & Shirakawa, S. (1987). Amygda-lar connections with middle and inferior temporal gyri of the monkey. Neuroscience Letters 83, 2529.CrossRefGoogle ScholarPubMed
Jones, E.G. (1975). Some aspects of the organization of the thalamic reticular complex. Journal of Comparative Neurology 162, 285308.CrossRefGoogle ScholarPubMed
Jones, E.G. & Leavitt, R.Y. (1974). Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. Journal of Comparative Neurology 154, 349378.CrossRefGoogle Scholar
Kaas, J.H. & Huerta, M.F. (1988). The subcortical visual system of primates. In Comparative Primate Biology, Vol. 4, ed. Setklis, H.D. & Erwin, J., pp. 327391. New York: Liss.Google Scholar
Kadoya, S., Wolin, L.R. & Massopust, L.C. Jr, (1971). Photically evoked unit activity in the tectum opticum of the squirrel monkey. Journal of Comparative Neurology 142, 495508.CrossRefGoogle ScholarPubMed
Keizer, K., Kuypers, H.G.J.M., Huisman, A.M. & Dann, O. (1983). Diamidino Yellow dihydrochloride (DY 2HC1): A new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell. Experimental Brain Research 51, 179191.CrossRefGoogle Scholar
Kievit, J. & Kuypers, H.G.J.M. (1975 a). Basal forebrain and hypo-thalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187, 660662.CrossRefGoogle Scholar
Kievit, J. & Kuypers, H.G.J.M. (1975 b). Subcortical afferents to the frontal lobe in the rhesus monkey studied by means of retrograde horseradish peroxidase transport. Brain Research 85, 261266.CrossRefGoogle Scholar
Kikuchi, R. & Iwai, E. (1980). The locus of the posterior subdivision of the inferotemporal visual learning area in the monkey. Brain Research 198, 347360.CrossRefGoogle ScholarPubMed
Klüver, H. & Bucy, P.C. (1939). Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology and Psychiatry 42, 9791000.CrossRefGoogle Scholar
Krubitzer, L.A. & Kaas, J.H. (1990). Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns. Visual Neuroscience 5, 165204.CrossRefGoogle ScholarPubMed
Lane, R.H., Allman, J.M., Kaas, J.H. & Miezin, F.M. (1973). The visuotopic organization of the superior colliculus of the owl monkey (Aotus trivirgatus) and the bush baby (Galago senegalensis). Brain Research 60, 335349.CrossRefGoogle ScholarPubMed
Lin, C.-S. & Kaas, J.H. (1979). The inferior pulvinar complex in owl monkeys: Architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex. Journal of Comparative Neurology 187, 655678.CrossRefGoogle ScholarPubMed
Macchi, G., Bentovoglio, M., D’Atena, C., Rossini, P. & Tempesta, E. (1977). The cortical projections of the thalamic intralaminar nuclei restudied by means of the HRP retrograde transport method. Neuroscience Letters 4, 121126.CrossRefGoogle Scholar
Martinez-Millan, M. & Holländer, H. (1975). Cortico-cortical projections from striate cortex of the squirrel monkey (Saimiri sciureus). A radioautographic study. Brain Research 83, 405417.CrossRefGoogle ScholarPubMed
Mathers, L.H. (1972). The synaptic organization of the cortical projection to the pulvinar of the squirrel monkey. Journal of Comparative Neurology 146, 4360.CrossRefGoogle Scholar
Mesulam, M.-M. (1978). Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. Journal of Histochemistry and Cytochemistry 26, 106117.CrossRefGoogle Scholar
Mesulam, M.-M., Mufson, E.J., Levey, A.I. & Wainer, B.H. (1983). Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. Journal of Comparative Neurology 214, 170197.CrossRefGoogle ScholarPubMed
Mishkin, M. (1982). A memory system in the monkey. Philosophical Transactions of the Royal Society B (London) 298, 8595.Google ScholarPubMed
Mishkin, M. & Appenzeller, T. (1987). The anatomy of memory. Scientific American 256, 8089.CrossRefGoogle ScholarPubMed
Mishkin, M., Malamut, B. & Bachevalier, J. (1984). Memories and habits: Two neural systems. In Neurobiology of Learning and Memory, ed. Lynch, G., Mcgaugh, J. & Weinberger, N., pp. 6577. New York: Guilford Press.Google Scholar
Mizuno, N., Uchida, K., Nomura, S., Nakamura, Y., Sugimoto, T. & Uemura-Sumi, M. (1981). Extrageniculate projections to the visual cortex in the macaque monkey: An HRP study. Brain Research 212, 454459.CrossRefGoogle Scholar
Moran, J. & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science 229, 782784.CrossRefGoogle ScholarPubMed
Morel, A. & Bullier, J. (1990). Anatomical segregation of two cortical visual pathways in the macaque monkey. Visual Neuroscience 4, 555578.CrossRefGoogle ScholarPubMed
Murray, E.A. & Mishkin, M. (1985). Amygdalectomy impairs cross-modal association in monkeys. Science 228, 604606.CrossRefGoogle Scholar
Newsome, W.T. & Pare, E.B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience 8, 22012211.CrossRefGoogle ScholarPubMed
Newsome, W.T., Wurtz, R.H., Dursteler, M.R. & Mikami, A. (1985). Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. Journal of Neuroscience 5, 825840.CrossRefGoogle ScholarPubMed
Ogren, M. (1977). Evidence for a projection from pulvinar to striate cortex in the squirrel monkey. Experimental Neurology 54, 622625.CrossRefGoogle ScholarPubMed
Ogren, M. & Hendrickson, A. (1976). Pathways between striate cortex and subcortical regions in Macaca mulatto and Saimiri sciureus: Evidence for a reciprocal pulvinar connection. Experimental Neurology 53, 780800.CrossRefGoogle Scholar
Panula, P., Airaksinen, M.S., Pirvola, U. & Kotilainen, E. (1990). A histamine-containing neuronal system in human brain. Neuroscience 34, 127132.CrossRefGoogle ScholarPubMed
Pearson, R.C.A., Brodal, P., Gatter, K.C. & Powell, T.P.S. (1982). The organization of the connections between the cortex and the claustrum in the monkey. Brain Research 234, 435441.CrossRefGoogle ScholarPubMed
Price, J.L., Russchen, F.T. & Amaral, D.G. (1987). The limbic region. II. The amygdaloid complex. In Handbook of Chemical Neu-roanatomy, Vol. 5, ed. Björklund, A., Hökfelt, T. & Swanson, L.W., pp. 279388. New York: Elsevier.Google Scholar
Reitz, S.L. & Pribram, K.H. (1969). Some subcortical connections of the inferotemporal gyrus of monkey. Experimental Neurology 25, 632645.CrossRefGoogle ScholarPubMed
Richardson, R.T. & Delong, M.R. (1988). A reappraisal of the functions of the nucleus basalis of Meynert. Trends in Neuroscience Abstracts 11, 264267.CrossRefGoogle ScholarPubMed
Robinson, D.L. & Petersen, S.E. (1992). The pulvinar and visual salience. Trends in Neuroscience Abstracts 15, 127132.CrossRefGoogle ScholarPubMed
Sadikot, A.F. & Parent, A. (1990). The monoaminergic innervation of the amygdala in the squirrel monkey: An immunohistochemical study. Neuroscience 36, 431447.CrossRefGoogle ScholarPubMed
Saint-Cyr, J.A., Uncerleider, L.G. & Desimone, R. (1990). Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. Journal of Comparative Neurology 298, 129156.CrossRefGoogle Scholar
Sato, T. (1989). Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques. Experimental Brain Research 77, 2330.CrossRefGoogle ScholarPubMed
Schmahmann, J.D. & Pandya, D.N. (1991). Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. Journal of Comparative Neurology 308, 224248.CrossRefGoogle Scholar
Schreiner, L. & Kling, A. (1956). Rhinencephalon and behavior. American Journal of Physiology 184, 486490.CrossRefGoogle ScholarPubMed
Seltzer, B. & Pandya, D.N. (1978). Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Research 139, 124.CrossRefGoogle Scholar
Shiwa, T. (1987). Corticocortical projections to the monkey temporal lobe with particular reference to the visual processing pathways. Archives Italiennes de Biologie 125, 139154.Google Scholar
Spatz, W.B., Tigges, J. & Tigges, M. (1970). Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri). Journal of Comparative Neurology 140, 155174.CrossRefGoogle ScholarPubMed
Steele, G.E., Kopp, D.M. & Weller, R.E. (1990). Subcortical connections of inferior temporal cortex in squirrel monkeys. Society for Neuroscience Abstracts 16, 110.Google Scholar
Steele, G.E., Weller, R.E. & Cusick, C.G. (1991 a). Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys. Journal of Comparative Neurology 306, 495520.CrossRefGoogle ScholarPubMed
Steele, G.E., Weller, R.E. & Kaas, J.H. (1991 b). A comparative study of the subcortical connections of the dorsolateral area (V4) in primates. Society for Neurosciences Abstracts 17, 845.Google Scholar
Tigges, J., Spatz, W.B. & Tigges, M. (1974). Efferent cortico-cortical fiber connections of area 18 in the squirrel monkey (Saimiri). Journal of Comparative Neurology 158, 219238.CrossRefGoogle ScholarPubMed
Tigges, J. & Tigges, M. (1981). Distribution of retinofugal and corti-cofugal axon terminals in the superior colliculus of squirrel monkey. Investigative Ophthalmology and Vision Science 20, 149158.Google ScholarPubMed
Tigges, J. & Tigges, M. (1985). Subcortical sources of direct projections to visual cortex. In Cerebral Cortex, Vol. 3, ed. Peters, A. & Jones, E.G., pp. 351378. New York: Plenum Press.Google Scholar
Tigges, J., Tigges, M., Anschel, S., Cross, N.A., Letbetter, W.D. & Mcbride, R.L. (1981). Areal and laminar distribution of neurons interconnecting the central vision cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri). Journal of Comparative Neurology 202, 539560.CrossRefGoogle Scholar
Tigges, J., Tigges, M., Cross, N.A., Mcbride, R.L., Letbetter, W.D. & Anschel, S. (1982). Subcortical structures projecting to visual cortical areas in squirrel monkey. Journal of Comparative Neurology 209, 2940.CrossRefGoogle ScholarPubMed
Towns, L.C., Tigges, J. & Tigges, M. (1990). Termination of thalamic intralaminar nuclei afferents in visual cortex of squirrel monkey. Visual Neuroscience 5, 151154.CrossRefGoogle ScholarPubMed
Trojanowski, J.Q. & Jacobson, S. (1975). A combined horseradish peroxidase-autoradiographic investigation of reciprocal connections between superior temporal gyrus and pulvinar in squirrel monkey. Brain Research 85, 347353.CrossRefGoogle ScholarPubMed
Turner, B.H., Mishkin, M. & Knapp, M. (1980). Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. Journal of Comparative Neurology 191, 515543.CrossRefGoogle ScholarPubMed
Ungerleider, L.G., Desimone, R., Galkin, T. & Mishkin, M. (1984). Subcortical projections of area MT in the macaque. Journal of Comparative Neurology 223, 368386.CrossRefGoogle ScholarPubMed
Ungerleider, L.G., Galkin, T.W. & Mishkin, M. (1983). Visuotopic organization of projections from striate cortex to inferior and lateral pulvinar in rhesus monkey. Journal of Comparative Neurology 217, 137157.CrossRefGoogle ScholarPubMed
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior, ed. Ingle, D.J., Goodale, M.A. & Mansfield, R.J.W., pp. 549586. Cambridge, Massachusetts: MIT Press.Google Scholar
Van Essen, D.C., Felleman, D.J., Deyoe, E.A., Olavarria, J. & Knierim, J. (1990). Modular and hierarchical organization of ex-trastriate visual cortex in the macaque monkey. Cold Spring Harbor Symposia on Quantitative Biology 55, 679696.CrossRefGoogle ScholarPubMed
Van Hoesen, G.W., Yeterian, E.H. & Lavizzo-Mourey, R. (1981). Widespread corticostriate projections from temporal cortex of the rhesus monkey. Journal of Comparative Neurology 199, 205219.CrossRefGoogle ScholarPubMed
Vincent, S.R., Hökfelt, T., Skirboli, L.R. & Wu, J.-Y. (1983). Hypothalamic gamma-aminobutyric acid neurons project to the neocortex. Science 220, 13091311.CrossRefGoogle Scholar
Von Bonin, G. & Bailey, P. (1947). The Neocortex ofMacaca mulatto. Urbana, Illinois: University of Illinois Press.Google Scholar
Von Bonin, G. & Bailey, P. (1950). The Isocortex of the Chimpanzee. Urbana, Illinois: University of Illinois Press.Google Scholar
Weber, J.T. (1985). Pretectal complex and accessory optic system of primates. Brain, Behavior, and Evolution 26, 117140.CrossRefGoogle ScholarPubMed
Webster, M.J., Ungerleider, L.G. & Bachevalier, J. (1993). Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys. Journal of Comparative Neurology (in press).CrossRefGoogle ScholarPubMed
Webster, M.J., Ungerleider, L.G. & Bachevalier, J. (1991 a). Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. Journal of Neuroscience 11, 10951116.CrossRefGoogle ScholarPubMed
Webster, M.J., Ungerleider, L.G. & Bachevalier, J. (1991 b). Subcortical connections of inferior temporal areas TE and TEO in macaques. Society for Neurosciences Abstracts 17, 845.Google Scholar
Weiskrantz, L. (1956). Behavioral changes associated with ablation of the amygdaloid complex in monkeys. Journal of Comparative and Physiological Psychology 49, 381391.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1986). Connections of two subdivisions of inferior temporal cortex of owl monkeys with the pulvinar complex. Society for Neuroscience Abstracts 12, 1039.Google Scholar
Weller, R.E. & Kaas, J.H. (1987). Subdivisions and connections of inferior temporal cortex in owl monkeys. Journal of Comparative Neurology 256, 137172.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1988). Subcortical connections of inferior temporal cortex of owl monkeys. Society for Neuroscience Abstracts 14, 992.Google Scholar
Weller, R.E. & Steele, G.E. (1992). Cortical connections of subdivisions of inferior temporal cortex in squirrel monkeys. Journal of Comparative Neurology 324, 3766.CrossRefGoogle ScholarPubMed
Weller, R.E., Steele, G.E. & Cusick, C.G. (1991). Cortical connections of dorsal cortex rostral to VII in squirrel monkeys. Journal of Comparative Neurology 306, 521537.CrossRefGoogle Scholar
Weller, R.E., Wall, J.T. & Kaas, J.H. (1984). Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys. Journal of Comparative Neurology 228, 81104.CrossRefGoogle ScholarPubMed
Whitlock, D.G. & Nauta, W.J.H. (1956). Subcortical projections from the temporal neocortex in Macaca mulatto. Journal of Comparative Neurology 106, 183212.CrossRefGoogle Scholar
Wong-Riley, M.T.T. (1977). Connections between the pulvinar nucleus and the prestriate cortex in the squirrel monkey as revealed by per-oxidase histochemistry and autoradiography. Brain Research 134, 249267.CrossRefGoogle Scholar
Wong-Riley, M.T.T. (1979). Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys. Brain Research 162, 201217.CrossRefGoogle ScholarPubMed
Yaginuma, S. (1990). Functional subdivisions of area TE of the infe-rotemporal cortex in the monkey. In Vision, Memory, and the Temporal Lobe, ed. Iwai, E. & Mishkin, M., pp. 2941. New York: Elsevier.Google Scholar
Yeterian, E.H. & Pandya, D.N. (1989). Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey. Journal of Comparative Neurology 282, 8097.CrossRefGoogle ScholarPubMed
Yeterian, E.H. & Pandya, D.N. (1991). Corticothalamic connections of the superior temporal sulcus in rhesus monkeys. Experimental Brain Research 83, 268284.CrossRefGoogle ScholarPubMed
Yukie, M., Takeuchi, H., Hasegawa, Y. & Iwai, E. (1990). Differential connectivity of inferotemporal area TE with the amygdala and the hippocampus in the monkey. In Vision, Memory, and the Temporal Lobe, ed. Iwai, E. & Mishkin, M., pp. 129135. New York: Elsevier.Google Scholar
Zola-Morgan, S., Squire, L.R. & Amaral, D.G. (1989). Lesions of the amygdala that spare adjacent cortical regions do not impair memory or exacerbate the impairment following lesions of the hippocam-pal formation. Journal of Neuroscience 9, 19221936.CrossRefGoogle ScholarPubMed