Article contents
Substance P-immunoreactive neurons in hamster retinas
Published online by Cambridge University Press: 01 May 1999
Abstract
Light-microscopic immunocytochemistry was utilized to localize the different populations of substance P-immunoreactive (SP-IR) neurons in the hamster retina. Based on observation of 2505 SP-IR neurons in transverse sections, 34% were amacrine cells whose pear-shaped or round cell bodies (7–8 μm) were situated in the inner half of the inner nuclear layer (INL) or in the inner plexiform layer (IPL), while 66% of SP-IR somata (6–20 μm) were located in the ganglion cell layer (GCL) which were interpreted to be displaced amacrine cells and retinal ganglion cells (RGCs). At least three types of SP-IR amacrine cells were identified. The SP-IR processes were distributed in strata 1, 3, and 5 with the densest plexus in stratum 5 of the inner plexiform layer. In the wholemounted retina, the SP-IR cells were found to be distributed throughout the entire retina and their mean number was estimated to be 4224 ± 76. Two experiments were performed to clarify whether any of the SP-IR neurons in the GCL were RGCs. The first experiment demonstrated the presence of SP-IR RGCs by retrogradely labeling the RGCs and subsequently staining the SP-IR cells in the retina using immunocytochemistry. The second experiment identified SP-IR central projections of RGCs to the contralateral dorsal lateral geniculate nucleus. This projection disappeared following removal of the contralateral eye. The number of SP-IR RGCs was estimated following optic nerve section. At 2 months after sectioning the optic nerve, the total number of SP-IR neurons in the GCL reduced from 4224 ± 76 to a mean of 1192 ± 139. Assuming that all SP-IR neurons in the GCL which disappeared after nerve section were RGCs, the number of SP-IR RGCs was estimated to be 3032, representing 3–4% of the total RGCs. In summary, findings of the present study provide evidence for the existence of SP-IR RGCs in the hamster retina.
Keywords
- Type
- Research Article
- Information
- Copyright
- 1999 Cambridge University Press
- 8
- Cited by