Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T19:48:03.991Z Has data issue: false hasContentIssue false

Unilateral photoreceptor rescue can improve the ability of the opposite, untreated, eye to drive cortical cells in a retinal degeneration model

Published online by Cambridge University Press:  05 April 2005

S.V. GIRMAN
Affiliation:
Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City
R.D. LUND
Affiliation:
Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City

Abstract

In the Royal College of Surgeons, rat photoreceptor degeneration occurs over the first several months of life, causing deterioration of visual cortical responsiveness seen as greater numbers of cells being nonresponsive to visual stimulation, poor tuning of those cells that do respond, and an overall tendency for domination by the contralateral visual input. If the progress of degeneration in one eye is slowed by intraretinal cell transplantation, cortical responses to stimulation of the remaining, untreated, eye are much stronger, better tuned and histograms of ocular dominance resemble more those in normal rats. This suggests that the rescued eye is able to enhance performance in the untreated eye by some form of postsynaptic mechanism.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonini, A., Gillespie, D.C., Crair, M.C., & Stryker, M.P. (1998). Morphology of single geniculo-cortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten. Journal of Neuroscience 18, 98969909.Google Scholar
Bear, M.F. (2003). Bidirectional synaptic plasticity: From theory to reality. Philosophical Transactions of the Royal Society B (London) 358, 649655.CrossRefGoogle Scholar
Bienenstock, E.L., Cooper, L.N., & Munro, P.W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience 2, 3248.Google Scholar
Bok, D. & Hall, M.O. (1971). The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. Journal of Cell Biology 49, 664682.CrossRefGoogle Scholar
Chaitin, M.H. & Hall, M.O. (1983). Defective ingestion of rod outer segments by cultured dystrophic rat pigment epithelial cells. Investigative Ophthalmology and Visual Science 24, 812820.Google Scholar
Coffey, P.J., Girman, S., Wang, S.M., Hetherington, L., Keegan, D.J., Adamson, P., Greenwood, J., & Lund, R.D. (2002). Long-term preservation of cortically dependent visual function in RCS rats by transplantation. Nature Neuroscience 5, 5356.CrossRefGoogle Scholar
Cunningham, T.J. & Lund, R.D. (1971). Laminar patterns in the dorsal division of the lateral geniculate nucleus of the rat. Brain Research 34, 394398.CrossRefGoogle Scholar
D'Cruz, P.M., Yasumura, D., Weir, J., Matthes, M.T., Abderrahim, H., LaVail, M.M., & Vollrath, D. (2000). Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Human Molecular Genetics 9, 645651.CrossRefGoogle Scholar
Desai, N.S., Cudmore, R.H., Nelson, S.B., & Turrigiano, G.G. (2002). Critical periods for experience-dependent synaptic scaling in visual cortex. Nature Neuroscience 5, 783789.Google Scholar
Dowling, J.E. & Sidman, R.L. (1962). Inherited retinal dystrophy in the rat. Journal of Cell Biology 14, 73107.CrossRefGoogle Scholar
Fagiolini, M., Fritschy, J.M., Low, K., Mohler, H., Rudolph, U., & Hensch, T.K. (2004). Specific GABAA circuits for visual cortical plasticity. Science 12, 303, 16811683.CrossRefGoogle Scholar
Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L., & Maffei, L. (1994). Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation. Vision Research 34, 709720.CrossRefGoogle Scholar
Girman, S.V., Sauve, Y., & Lund, R.D. (1999). Receptive field properties of single neurons in rat primary visual cortex. Journal of Neurophysiology 82, 301311.Google Scholar
Girman, S.V., Wang, S., & Lund, R.D. (2003). Cortical visual functions can be preserved by subretinal RPE cell grafting in RCS rats. Vision Research 43, 18171827.CrossRefGoogle Scholar
Girman, S.V., Wang, S., & Lund, R.D. (2005). Time course of deterioration of rod and cone function in RCS rat and the effects of subretinal cell grafting: A light- and dark-adaptation study. Vision Research 45, 343354.CrossRefGoogle Scholar
Gouras, P. & Lopez, R. (1989). Transplantation of retinal epithelial cells. Investigative Ophthalmology and Visual Science 30, 16811683.Google Scholar
Guire, E.S., Lickey, M.E., & Gordon, B. (1999). Critical period for the monocular deprivation effect in rats: Assessment with sweep visually evoked potentials. Journal of Neurophysiology 81, 121128.Google Scholar
Hensch, T.K. (2003). Controlling the critical period. Neuroscience Research 47, 1722.CrossRefGoogle Scholar
Hensch, T.K., Fagiolini, M., Mataga, N., Stryker, M.P., Baekkeskov, S., & Kash, S.F. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 15041508.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology 160, 106154.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology 28, 10411059.Google Scholar
Kind, P.C., Mitchell, D.E., Ahmed, B., Blakemore, C., Bonhoeffer, T., & Sengpiel, F. (2002). Correlated binocular activity guides recovery from monocular deprivation. Nature 416, 430433.CrossRefGoogle Scholar
Li, L., Sheedlo, H.J., & Turner, J.E. (1990). Long-term rescue of photoreceptor cells in the retinas of RCS dystrophic rats by RPE transplants. Progress in Brain Research 82, 179185.CrossRefGoogle Scholar
Linkenhoker, B.A. & Knudsen, E.I. (2002). Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419, 293296.CrossRefGoogle Scholar
Lund, R.D., Adamson, P., Sauve, Y., Keegan, D.J., Girman, S.V., Wang, S., Winton, H., Kanuga, N., Kwan, A.S., Beauchene, L., Zerbib, A., Hetherington, L., Couraud, P.O., Coffey, P., & Greenwood, J. (2001). Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proceedings of the National Academy of Sciences of the U.S.A. 98, 99429947.CrossRefGoogle Scholar
McGill, T.J., Douglas, R.M., Lund, R.D, & Prusky, G.T. (2004). Quantification of spatial vision in the Royal College of Surgeons rat. Investigative Ophthalmology and Visual Science 45, 932936.CrossRefGoogle Scholar
Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J.W., & Maffei, L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 12481251.CrossRefGoogle Scholar
Prusky, G.T., West, P.W., & Douglas, R.M. (2000). Experience-dependent plasticity of visual acuity in rats. European Journal of Neuroscience 12, 37813786.CrossRefGoogle Scholar
Reese, B.E. (1988). ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: The functional organization of this thalamic region in the rat. Brain Research 472, 119137. Review.CrossRefGoogle Scholar
Reiter, H.O., Waitzman, D.M., & Stryker, M.P. (1986). Cortical activity blockade prevents ocular dominance plasticity in the kitten visual cortex. Experimental Brain Research 65, 182188.Google Scholar
Sauve, Y., Girman, S., Wang, S., Keegan, D., & Lund, R. (2002). Preservation of visual responsiveness in the superior colliculus of RCS rats after retinal pigment epithelium cell transplantation. Neuroscience 114, 389.CrossRefGoogle Scholar
Schrader, L.A., Perrett, S.P., Ye, L., & Friedlander, M.J. (2004). Substrates for coincidence detection and calcium signaling for induction of synaptic potentiation in the neonatal visual cortex. Journal of Neurophysiology 91, 27472764.CrossRefGoogle Scholar
Sengpiel, F. & Kind, P.C. (2002). The role of activity in development of the visual system. Current Biology 12, 818826. Review.CrossRefGoogle Scholar
Stryker, M.P. & Harris, W.A. (1986). Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. Journal of Neuroscience 6, 21172133.Google Scholar
Waleszczyk, W.J., Wang, C., Young, J.M., Burke, W., Calford, M.B., & Dreher, B. (2003). Laminar differences in plasticity in area 17 following retinal lesions in kittens or adult cats. European Journal of Neuroscience 17, 23512368.CrossRefGoogle Scholar
Whiteley, S.J., Litchfield, T.M., Coffey, P.J., & Lund, R.D. (1996). Improvement of the pupillary light reflex of Royal College of Surgeons rats following RPE cell grafts. Experimental Neurology 140, 100104.CrossRefGoogle Scholar