Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T11:54:09.627Z Has data issue: false hasContentIssue false

Characteristics of Müller glial cells in MNU-induced retinal degeneration

Published online by Cambridge University Press:  17 October 2016

MIRIAM REISENHOFER
Affiliation:
Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
THOMAS PANNICKE
Affiliation:
Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
ANDREAS REICHENBACH
Affiliation:
Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
VOLKER ENZMANN*
Affiliation:
Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
*
*Address correspondence to: Volker Enzmann, Department of Ophthalmology, Inselspital, Bern University Hospital, Freiburgstr. 14, 3010 Bern, Switzerland. E-mail: volker.enzmann@insel.ch

Abstract

Retinal Müller glial cells have been shown to undergo reactive gliosis in a variety of retinal diseases. Upregulation of glial fibrillary acidic protein (GFAP) is a hallmark of Müller cell activation. Reactive gliosis after retinal detachment or ischemia/reperfusion is characterized by hypertrophy and downregulation of inwardly rectifying K+ (Kir) currents. However, this kind of physiological alteration could not be detected in slowly progressing retinal degenerations. The photoreceptor toxin N-methyl-N-nitrosourea (MNU) leads to the rapid loss of cells in the outer nuclear layer and subsequent Müller cell activation. Here, we investigated whether Müller cells from MNU-treated mice exhibit reactive gliosis. We found that Müller cells showed increased GFAP expression and increased membrane capacitance, indicating hypertrophy. Membrane potential and Kir channel-mediated K+ currents were not significantly altered whereas Kir4.1 mRNA expression and Kir-mediated inward current densities were markedly decreased. This suggests that MNU-induced Müller cell gliosis is characterized by plasma membrane increase without alteration in the membrane content of Kir channels. Taken together, our findings show that Müller cells of MNU-treated mice are reactive and respond with a form of gliosis which is characterized by cellular hypertrophy but no changes in Kir current amplitudes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolz, S., Schuettauf, F., Fries, J.E., Thaler, S., Reichenbach, A. & Pannicke, T. (2008). K+ currents fail to change in reactive retinal glial cells in a mouse model of glaucoma. Graefe’s Archive for Clinical and Experimental Ophthalmology 246, 12491254.Google Scholar
Bringmann, , , A., Francke, , , M., Pannicke, , , T., Biedermann, , , B., Kodal, , , H., Faude, , , F., Reichelt, , , W. & Reichenbach, A. (2000). Role of glial K+ channels in ontogeny and gliosis: A hypothesis based upon studies on Müller cells. Glia 29, 3544.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Bringmann, , , A., Pannicke, , , T., Uhlmann, , , S., Kohen, , , L., Wiedemann, , , P. & Reichenbach, A. (2002). Membrane conductance of Müller glial cells in proliferative diabetic retinopathy. Canadian Journal of Ophthalmology 37, 221227.Google Scholar
Bringmann, , , A., Pannicke, , , T., Grosche, , , J., Francke, , , M., Wiedemann, , , P., Skatchkov, , , S.N., Osborne, , , N.N. & Reichenbach, A. (2006). Müller cells in the healthy and diseased retina. Progress in Retinal and Eye Research 25, 397424.Google Scholar
Bringmann, , , A., Iandiev, , , I., Pannicke, , , T., Wurm, , , A., Hollborn, , , M., Wiedemann, , , P., Osborne, , , N.N. & Reichenbach, A. (2009). Cellular signaling and factors involved in Müller cell gliosis: Neuroprotective and detrimental effects. Progress in Retinal and Eye Research 28, 423451.Google Scholar
Chen, , , Y.Y., Liu, , , S.L., Hu, , , D.P., Xing, , , Y.Q. & Shen, Y. (2014). N-Methyl-N-nitrosourea-induced retinal degeneration in mice. Experimental Eye Research 121, 102113.Google Scholar
Francke, , , M., Pannicke, , , T., Biedermann, , , B., Faude, , , F., Wiedemann, , , P., Reichenbach, , , A. & Reichelt, W. (1997). Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia 20, 210218.Google Scholar
Francke, , , M., Faude, , , F., Pannicke, , , T., Bringmann, , , A., Eckstein, , , P., Reichelt, , , W., Wiedemann, , , P. & Reichenbach, A. (2001). Electrophysiology of rabbit Müller (glial) cells in experimental retinal detachment and PVR. Investigative Ophthalmology & Visual Science 42, 10721079.Google ScholarPubMed
Hirrlinger, , , P.G., Ulbricht, , , E., Iandiev, , , I., Reichenbach, , , A. & Pannicke, T. (2010). Alterations in protein expression and membrane properties during Müller cell gliosis in a murine model of transient retinal ischemia. Neuroscience Letters 472, 7378.CrossRefGoogle Scholar
Iandiev, , , I., Uckermann, , , O., Pannicke, , , T., Wurm, , , A., Pietsch, , , U.-C., Reichenbach, , , A., Wiedemann, P., Bringmann, A. & Uhlmann, S. (2006a). Glial cell reactivity in a porcine model of retina detachment. Investigative Ophthalmology & Visual Science 47, 21612171.Google Scholar
Iandiev, , , I., Biedermann, , , B., Bringmann, , , A., Reichel, , , M.B., Reichenbach, , , A. & Pannicke, T. (2006b). Atypical gliosis in Müller cells of the slowly degenerating rds mutant mouse retina. Experimental Eye Research 82, 449457.CrossRefGoogle ScholarPubMed
Iandiev, , , I., Pannicke, , , T., Hollborn, , , M., Wiedemann, , , P., Reichenbach, , , A., Grimm, , , C., Remè, C.E. & Bringmann, A. (2008a). Localization of glial aquaporin-4 and Kir4.1 in the light-injured murine retina. Neuroscience Letters 434, 317321.Google Scholar
Iandiev, , , I., Wurm, , , A., Hollborn, , , M., Wiedemann, , , P., Grimm, , , C., Reme, , , C.E., Reichenbach, , , A., Pannicke, , , T. & Bringmann, A. (2008b). Muller cell response to blue light injury of the rat retina. Investigative Ophthalmology and Visual Science 49, 35593567.CrossRefGoogle ScholarPubMed
Jobst, K. (1967). Teratogenous changes and tumors in rats following treatment with methylnitroso-urea (MNU). Neoplasma 4, 435436.Google Scholar
Joly, , , S., Pernet, , , V., Samardzija, , , M. & Grimm, C. (2011). Pax6-positive Müller glia cells express cell cycle markers but do not proliferate after photoreceptor injury in the mouse retina. Glia 59, 10331046.CrossRefGoogle Scholar
Kofuji, , , P. & Connors, , , N.C. (2003). Molecular substrates of potassium spatial buffering in glial cells. Molecular Neurobiology 28, 195208.Google Scholar
Lewis, , , G.P. & Fisher, S.K. (2003). Up-regulation of glial fibrillary acidic protein in response to retinal injury: Its potential role in glial remodeling and a comparison to vimentin expression. International Review of Cytology 230, 263290.Google Scholar
Neher, , , E. & Marty, , , A. (1982). Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America 79, 67126716.Google Scholar
Pannicke, , , T., Weick, , , M., Uckermann, , , O., Wheeler-Schilling, , , T., Fries, , , J.E., Reichel, , , M.B., Mohr, , , C., Stahl, , , T., Fluess, , , M., Kacza, , , J., Seeger, , , J., Richt, , , J.A. & Reichenbach, A. (2001). Electrophysiological alterations and upregulation of ATP receptors in retinal glial Müller cells from rats infected with the Borna disease virus. Glia 35, 213223.Google Scholar
Pannicke, , , T., Uckermann, , , O., Iandiev, , , I., Biedermann, , , B., Wiedemann, , , P., Perlman, , , I., Reichenbach, , , A. & Bringmann, A. (2005a). Altered membrane physiology in Müller glial cells after transient ischemia of the rat retina. Glia 50, 111.Google Scholar
Pannicke, , , T., Uckermann, , , O., Iandiev, , , I., Wiedemann, , , P., Reichenbach, , , A. & Bringmann, A. (2005b). Ocular inflammation alters swelling and membrane characteristics of rat Müller glial cells. Journal of Neuroimmunology 161, 145154.CrossRefGoogle ScholarPubMed
Pannicke, , , T., Iandiev, , , I., Wurm, , , A., Uckermann, , , O., Vom Hagen, F., Reichenbach, , , A., Wiedemann, , , P., Hammes, , , H.-P. & Bringmann, A. (2006). Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55, 633639.CrossRefGoogle ScholarPubMed
Poché, R.A., Furuta, , , Y., Chaboissier, , , M.C., Schedl, , , A. & Behringer, , , R.R. (2008). Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller glial cell development. Journal of Comparative Neurology 510, 237250.Google Scholar
Rehak, , , M., Hollborn, , , M., Iandiev, , , I., Pannicke, , , T., Karl, , , A., Wurm, , , A., Kohen, , , L., Reichenbach, , , A., Wiedemann, , , P. & Bringmann, A. (2009). Retinal gene expression and Müller cell responses after branch retinal vein occlusion in the rat. Investigative Ophthalmology & Visual Science 50, 23592367.Google Scholar
Reichenbach, , , A. & Bringmann, A. (2010). Müller Cells in the Healthy and Diseased Retina. New York, NY, USA: Springer.Google Scholar
Reichenbach, , , A. & Bringmann, A. (2013). New functions of Müller cells. Glia 61, 651678.Google Scholar
Reisenhofer, , , M., Balmer, , , J., Zulliger, , , R. & Enzmann, V. (2015). Multiple programmed cell death pathways are involved in N-methyl-N-nitrosourea-induced photoreceptor degeneration. Graefe’s Archive for Clinical and Experimental Ophthalmology 253, 721731.Google Scholar
Sene, , , A., Tadayoni, , , R., Pannicke, , , T., Wurm, , , A., El Mathari, , , B., Benard, , , R., Roux, , , M.J., Yaffe, , , D., Mornet, , , D., Reichenbach, , , A., Sahel, , , J.-A. & Rendon, A. (2009). Functional implication of Dp71 in osmoregulation and vascular permeability of the retina. PloS One 4, e7329.CrossRefGoogle ScholarPubMed
Takahashi, , , K., Rochford, , , C.D. & Neumann, H. (2005). Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. Journal of Experimental Medicine 201, 647657.Google Scholar
Tsubura, , , A., Yoshizawa, , , K., Kiuch, , , K. & Moriguchi, K. (2003). N-Methyl-N-nitrosourea-induced retinal degeneration in animals. Acta Histochemica et Cytochemica 36, 263270.Google Scholar
Wan, , , J., Zheng, , , H., Xiao, , , H.L., She, , , Z.J. & Zhou, , , G.M. (2007). Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochemical and Biophysical Research Communications 363, 347354.Google Scholar
Wan, , , J., Zheng, , , H., Chen, , , Z.L., Xiao, , , H.L., Shen, , , Z.J. & Zhou, , , G.M. (2008). Preferential regeneration of photoreceptor from Müller glia after retinal degeneration in adult rat. Vision Research 48, 223234.Google Scholar
Wurm, , , A., Iandiev, , , I., Uhlmann, , , S., Wiedemann, , , P., Reichenbach, , , A., Bringmann, , , A. & Pannicke, T. (2011). Effects of ischemia-reperfusion on physiological properties of Müller glial cells in the porcine retina. Investigative Ophthalmology & Visual Science 52, 33603367.CrossRefGoogle ScholarPubMed
Yoshizawa, , , K., Nambu, , , H., Yang, , , J., Oishi, , , Y., Senzaki, , , H., Shikata, , , N., Miki, , , H. & Tsubura, A. (1999). Mechanisms of photoreceptor cell apoptosis induced by N-methyl-N-nitrosourea in Sprague–Dawley rats. Laboratory Investigation 79, 13591367.Google Scholar
Yuge, , , K., Nambu, , , H., Senzaki, , , H., Nakao, , , I., Miki, , , H., Uyama, , , M. & Tsubura, A. (1996). N-Methyl-N-nitrosourea-induced photoreceptor apoptosis in the mouse retina. In vivo 10, 483488.Google Scholar
Zulliger, , , R., Lecaude, , , S., Eigeldinger-Berthou, , , S., Wolf-Schnurrbusch, , , U.E. & Enzmann, V. (2011). Caspase-3-independent photoreceptor degeneration by N-methyl-N-nitrosourea (MNU) induces morphological and functional changes in the mouse retina. Graefe’s Archive for Clinical and Experimental Ophthalmology 249, 859869.CrossRefGoogle ScholarPubMed