Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T11:41:16.626Z Has data issue: false hasContentIssue false

Colocalization of substance P and GABA in retinal ganglion cells: A computer-assisted visualization

Published online by Cambridge University Press:  02 June 2009

Daniel M. Caruso
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit
Michael T. Owczarzak
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit
Roberta G. Pourcho
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit

Abstract

Ganglion cells in the albino rat retina were retrogradely labeled with the fluorescent dye, diamidino-yellow, from the superior colliculus. Preembedding and postembedding immunocytochemical techniques were employed in conjunction with computer-assisted image processing to visualize SP- and GABA-immunoreactivity. Examination of flatmount and sectioned retinas revealed that approximately 3% of the ganglion cells projecting to the contralateral superior colliculus exhibit SP-immunoreactivity. Moreover, these cells were found to comprise a subpopulation of the GABA-immunoreactive cells projecting to the rat tectum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brecha, N., Johnson, D., Bolz, J., Sharma, S., Parnavelas, J.G. & Liberman, A.R. (1987). Substance P-immunoreactive retinal ganglion cells and their central axon terminals in rabbit. Nature 327, 155158.CrossRefGoogle ScholarPubMed
Brecha, N.C., Eldred, W., Kuljis, R.O. & Karten, H.J. (1984). Identification and localization of biologically active peptides in the vertebrate retina. In Progress in Retinal Research, Vol. 3, ed. Osborne, N. & Chader, G., pp. 185226. Oxford, England: Pergamon.Google Scholar
Caruso, D.M., Owczarzak, M.T., Goebel, D.J., Hazlett, J.C. & Pourcho, R.G. (1989). GABA immunoreactivity in ganglion cells of the rat retina. Brain Research 476, 129134.CrossRefGoogle ScholarPubMed
Ehrlich, D., Keyser, K.T. & Karten, H.J. (1987). Distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Gallus gallus). Journal of Comparative Neurology 266, 220233.CrossRefGoogle ScholarPubMed
Enestrom, S. & Hed, J. (1982). Combined immunomorphological examination of Epon embedded kidney biopsies. American Journal of Clinical Pathology 77, 249258.Google ScholarPubMed
Hayhaw, W.R., Sefton, A. & Webb, C. (1962). Primary optic centres in the rat in relation to the terminal distribution of the crossed and uncrossed optic nerve fibers. Journal of Comparative Neurology 118, 187216.Google Scholar
Hurd, L.B. & Eldred, W.D. (1989). Localization of GABA- and GAD-like immunoreactivity in the turtle retina. Visual Neuroscience 3, 920.CrossRefGoogle ScholarPubMed
Kuljis, R.O. & Karten, H.J. (1982). Laminar organization of peptidelike immunoreactivity in anuran optic tectum. Journal of Comparative Neurology 212, 188201.CrossRefGoogle ScholarPubMed
Kuljis, R.O., Krause, J.E. & Karten, H.J. (1984). Peptide-like immunoreactivity in anuran optic nerve fibers. Journal of Comparative Neurology 226, 222237.CrossRefGoogle ScholarPubMed
Linden, R. & Perry, V.H. (1983). Massive retinotectal projections in rats. Brain Research 272, 145149.CrossRefGoogle ScholarPubMed
Lund, R.D. (1965). Uncrossed visual pathways of hooded and albino rats. Science 149, 15061507.CrossRefGoogle ScholarPubMed
Lund, R.D., Land, P.W. & Boles, J. (1980). Normal and abnormal uncrossed retinotectal pathways in rats: an HRP study in adults. Journal of Comparative Neurology 189, 711720.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1988 a). Colocalization of substance P and gamma-aminobutyric acid in amacrine cells of the cat retina. Brain Research 447, 164168.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1988 b). Substance P-like immunoreactive amacrine cells in the cat retina. Journal of Comparative Neurology 275, 542552.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Owczarzak, M.T. (1989). Distribution of GABA immunoreactivity in the cat retina: a light- and electron-microscopic study. Visual Neuroscience 2, 425435.CrossRefGoogle ScholarPubMed
Rieder, C.L. & Bowser, S.S. (1985). Correlative immunofluorescence and electron microscopy on the same section of epon-embedded material. Journal of Histochemistry and Cytochemistry 33(2), 165171.CrossRefGoogle ScholarPubMed
Vaney, D.I., Whitington, G.E. & Young, H.M. (1989). The morphology and topographic distribution of substance P-like immunoreactive amacrine cells in the cat retina. Proceedings of the Royal Society B (London) 237, 471488.Google ScholarPubMed
Yu, B.C.-Y., Watt, C.B., Lam, D.M.K. & Fry, K.R. (1988). GABAergic ganglion cells in the rabbit retina. Brain Research 439, 376382.CrossRefGoogle ScholarPubMed
Zalutsky, R.A. & Miller, R.F. (1990). The physiology of substance P in the rabbit retina. Journal of Neuroscience 10(2), 394402.CrossRefGoogle ScholarPubMed