Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-11T07:49:03.020Z Has data issue: false hasContentIssue false

Colocalization of vasoactive intestinal polypeptide and GABA immunoreactivities in a population of wide-field amacrine cells in the rabbit retina

Published online by Cambridge University Press:  02 June 2009

Giovanni Casini
Affiliation:
Departments of Anatomy and Cell Biology, and Medicine, UCLA School of Medicine, Los Angeles and VAMC-West Los Angeles
Nicholas C. Brecha
Affiliation:
Departments of Anatomy and Cell Biology, and Medicine, UCLA School of Medicine, Los Angeles and VAMC-West Los Angeles Brain Research Institute and Jules Stein Eye Institute, UCLA, Los Angeles

Abstract

Vasoactive intestinal polypeptide (VIP) immunoreactive (IR) neurons in the rabbit retina constitute a population of wide-field amacrine cells. To better define this cell population, we examined the coexpression of VIP with other putative retinal transmitters or their biosynthetic enzymes, including γ-aminobutyric acid (GABA), tyrosine hydroxylase (TH), and somatostatin (SRIF). Colchicine-treated retinas were immersion fixed in 4% paraformaldehyde. The retinas were cut either perpendicular or parallel to the vitreal surface and processed by double-label immunofluorescence techniques using antibodies directed to VIP, GABA, TH, and SRIF. The immunoreactive staining patterns obtained with these antibodies were the same as those described in previous studies. GABA-IR neurons were localized to the proximal inner nuclear layer (INL) and ganglion cell layer (GCL) and processes were distributed throughout the inner plexiform layer (IPL). TH- and SR1F-IR neurons were sparsely distributed to the proximal INL and GCL, respectively. TH-IR processes ramified in laminae 1, 3, and 5, and SRIF-1R processes in laminae 1 and 5 of the IPL. Colocalization experiments showed that all VIP-IR neurons contain GABA immunoreactivity. In contrast, colocalization of VIP and TH or SRIF immunoreactivities was never observed. These results demonstrate that VIP-IR wide-field amacrines of the rabbit retina make up a neurochemically and morphologically distinct subpopulation of the GABA-IR amacrine cell population. Furthermore, VIP-IR amacrine cells constitute a distinct group with respect to the TH- and SRIF-IR amacrine cells.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodner, N., Fridkin, M. & Gozes, I. (1985). Coding sequences for vasoactive intestinal peptide and PHM-27 peptide are located on two adjacent exons in the human genome. Proceedings of the National Academy of Sciences of the U.S.A. 82, 35483551.CrossRefGoogle ScholarPubMed
Brecha, N.C. (1983). Retinal neurotransmitters: histochemical and biochemical studies. In Chemical Neuroanatomy, ed. Emson, P.C., pp. 85129. New York: Raven Press.Google Scholar
Brecha, N.C., Oyster, C.W. & Takahashi, E.S. (1984). Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. Investigative Ophihalmology and Visual Science 25, 6670.Google ScholarPubMed
Brecha, N.C., Johnson, D., Peichl, L. & Wässle, H. (1988). Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and γ-aminobutyrate immunoreactivity. Proceedings of the National Academy of Sciences of the U.S.A. 85, 61876191.CrossRefGoogle ScholarPubMed
Buchan, A.M.J., Sikora, L.K.J., Levy, J.G., Mcintosh, C.H.S., Dyck, I. & Brown, J.C. (1985). An immunocytochemical investigation with monoclonal antibodies to somatostatin. Histochemistry 83, 175180.CrossRefGoogle ScholarPubMed
Card, J.P., Brecha, N.C., Karten, H.J. & Moore, R.Y. (1981). Immunocytochemical localization of vasoactive intestinal polypeptide-containing cells and processes in the suprachiasmatic nucleus of the rat: light and electron microscopic analysis. Journal of Neuroscience 1, 1289.CrossRefGoogle ScholarPubMed
Casini, G. & Brecha, N.C. (1991a). Vasoactive intestinal polypeptide-containing cells in the rabbit retina: immunohistochemical localization and quantitative analysis. Journal of Comparative Neurology 305, 313327.CrossRefGoogle ScholarPubMed
Casini, G. & Brecha, N.C. (1991b). Co-expression of vasoactive intestinal polypeptide (VIP) and GABA in amacrine cells of rat and rabbit retinas. Investigative Ophthalmology and Visual Science (Suppl.) 32, 993.Google Scholar
Christofides, N.D., Polak, J.M. & Bloom, S.R. (1984). Studies on the distribution of PHI in mammals. Peptides 5, 261266.CrossRefGoogle ScholarPubMed
Itoh, N., Obata, K.-I., Yanaihara, N. & Okamoto, H. (1983). Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304, 547549.CrossRefGoogle ScholarPubMed
Kosaka, T., Kosaka, K., Hataguchi, Y., Nagatsu, I., Wu, J.-Y., Ottersen, O.P., Storm-Mathisen, J. & Hama, K. (1987). Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Experimental Brain Research 66, 191210.CrossRefGoogle ScholarPubMed
Kosaka, T., Tauchi, M. & Dahl, J.L. (1988). Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Experimental Brain Research 70, 605617.CrossRefGoogle ScholarPubMed
Longshore, M.A. & Makman, M.H. (1981). Stimulation of retinal adenylate cyclase by vasoactive intestinal polypeptide (VIP). European Journal of Pharmacology 70, 237240.CrossRefGoogle Scholar
Mosinoer, J.L. & Yazulla, S. (1987). Double-label analysis of GADand GABA-like immunoreactivity in the rabbit retina. Vision Research 27, 2330.CrossRefGoogle Scholar
Mosinger, J.L., Yazulla, S. & Studholme, K.M. (1986). GABA-like immunoreactivity in the vertebrate retina: a species comparison. Experimental Eye Research 42, 631644.CrossRefGoogle ScholarPubMed
Müller, R., Wässle, H. & Brecha, N.C. (1988). NADPH-diaphorase-positive amacrine cells show GABA-like immunoreactivity in cat retina. European Journal of Neurosciences (Suppl.) 1, 153.Google Scholar
Nishizawa, M., Hayakawa, Y., Yanaihara, N. & Okamoto, H. (1985). Nucleotide sequence divergence and functional constraint in VIP precursor mRNA evolution between human and rat. Federation of the European Biochemical Societies Letters 183, 5559.CrossRefGoogle ScholarPubMed
Okamura, H., Murakami, S., Uda, K., Sugano, T., Takahashi, Y., Yanaihara, C., Yanaihara, N. & Ibata, Y. (1986). Co-existence of vasoactive intestinal peptide (VlP)-peptide histidine isoleucine amide (PHI)-, and gastrin releasing peptide (GRP)-like immunoreactivity in neurons of the rat suprachiasmatic nucleus. Biomedical Research 7, 295299.CrossRefGoogle Scholar
Osborne, N.N. & Beaton, D.W. (1986). Direct histochemical localisation of 5,7-dihydroxytryptamine and the uptake of serotonin by a subpopulation of GABA neurones in the rabbit retina. Brain Research 382, 158162.CrossRefGoogle ScholarPubMed
Pachter, J.A. & Lam, D.M.-K. (1986). Interactions between vasoactive intestinal peptide and dopamine in the rabbit retina: stimulation of a common adenylate cyclase. Journal of Neurochemistry 46, 257264.CrossRefGoogle ScholarPubMed
Pachter, J.A., Marshak, D.W., LAM, D.M.-K. & Fry, K.R. (1989). A peptide histidine isoleucine/peptide histidine methionine-like peptide in the rabbit retina: colocalization with vasoactive intestinal peptide, synaptic relationships and activation of adenylate cyclase activity. Neuroscience 31, 507519.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1988). Colocalization of substance P and γ-aminobutyric acid in amacrine cells of the cat retina. Brain Research 447, 164168.CrossRefGoogle ScholarPubMed
Rickman, D.W. & Brecha, N.C. (1989). Morphologies of somatostatin-immunoreactive neurons in the rabbit retina. In Neurobiology of the Inner Retina, ed. Weiler, R. & Osborne, N., pp. 461468. New York: Springer Verlag.CrossRefGoogle Scholar
Rohrer, H., Acheson, A.L., Thibauit, J. & Thoenen, H. (1986). Developmental potential of quail dorsal root ganglion cells analyzed in vitro and in vivo. Journal of Neuroscience 6, 26162624.CrossRefGoogle ScholarPubMed
Sagar, S.M. (1987a). Vasoactive intestinal polypeptide (VIP) immunohistochemistry in the rabbit retina. Brain Research 426, 157163.CrossRefGoogle ScholarPubMed
Sagar, S.M. (1987b). Somatostatin-like immunoreactive material in the rabbit retina: immunohistochemical staining using monoclonal antibodies. Journal of Comparative Neurology 266, 291299.CrossRefGoogle ScholarPubMed
Shorderet, M., Hof, P. & Magistretti, P.J. (1984). The effects of VIP on cyclic AMP and glycogen levels in vertebrate retina. Peptides 5, 295298.CrossRefGoogle Scholar
Tauchi, M., Madigan, N.K. & Masland, R.H. (1990). Shapes and distributions of the catecholamine-accumulating neurons in the rabbit retina. Journal of Comparative Neurology 293, 178189.CrossRefGoogle ScholarPubMed
Tornqvist, K., Uddman, R., Sundler, F. & Ehinger, B. (1982). Somatostatin and VIP neurons in the retina of different species. Histochemislry 76, 137152.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1990). The mosaic of amacrine cells in the mammalian retina. In Progress in Retinal Research, Vol. 9, ed. Osborne, N.N. & Chader, G.J., pp. 49100. Oxford, England: Pergamon Press.Google Scholar
Vaney, D.I. & Young, H.M. (1988a). GABA-like immunoreactivity in NADPH-diaphorase amacrine cells of the rabbit retina. Brain Research 474, 380385.CrossRefGoogle ScholarPubMed
Vaney, D.I. & Young, H.M. (1988b). GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Research 438, 369373.CrossRefGoogle ScholarPubMed
Vaney, D.I., Whitington, G.E. & Young, H.M. (1989). The morphology and topographic distribution of substance P-like immunoreactive amacrine cells in the cat retina. Proceedings of the Royal Society B (London) 237, 471488.Google ScholarPubMed
Versaux-Botteri, C., Simon, A., Vigny, A. & Nguyen-Legros, J. (1987). Existence d'une immunoréactivité au GABA dans les cellules amacrines dopaminergiques de la rétine de rat. Comptes Rendus des Séances de l' Académie des Sciences III (Paris) 305, 381386.Google Scholar
WÄSsle, H. & Chun, M.H. (1988). Dopaminergic and indoleamine-accumulating amacrine cells express GABA-like immunoreactivity in the cat retina. Journal of Neuroscience 8, 33833394.CrossRefGoogle ScholarPubMed