Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T14:46:50.915Z Has data issue: false hasContentIssue false

Contour integration in amblyopic monkeys

Published online by Cambridge University Press:  22 January 2004

PETRA KOZMA
Affiliation:
Retina Foundation of the Southwest, Dallas
LYNNE KIORPES
Affiliation:
Center for Neural Science, New York University, New York

Abstract

Amblyopia is characterized by losses in a variety of aspects of spatial vision, such as acuity and contrast sensitivity. Our goal was to learn whether those basic spatial deficits lead to impaired global perceptual processing in strabismic and anisometropic amblyopia. This question is unresolved by the current human psychophysical literature. We studied contour integration and contrast sensitivity in amblyopic monkeys. We found deficient contour integration in anisometropic as well as strabismic amblyopic monkeys. Some animals showed poor contour integration in the fellow eye as well as in the amblyopic eye. Orientation jitter of the elements in the contour systematically decreased contour-detection ability for control and fellow eyes, but had less effect on amblyopic eyes. The deficits were not clearly related to basic losses in contrast sensitivity and acuity for either type of amblyopia. We conclude that abnormal contour integration in amblyopes reflects disruption of mechanisms that are different from those that determine acuity and contrast sensitivity, and are likely to be central to V1.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Algaze, A., Roberts, C., Leguire, L., Schmalbrock, P., & Rogers, G. (2002). Functional magnetic resonance imaging as a tool for investigating amblyopia in the human visual cortex: A pilot study. Journal of the American Academy of Pediatric Ophthalmology and Strabismus 6, 300308.Google Scholar
Barlow, H.B. (1977). Retinal and central factors in human vision limited by noise. In Vertebrate Photoreception, ed. Barlow, H.B. & Fatt, P., pp. 337358. New York: Academic Press.
Barnes, G.R., Hess, R.F., Dumoulin, S.O., Achtman, R.L., & Pike, G.B. (2001). The cortical deficit in humans with strabismic amblyopia. Journal of Physiology 533.1, 281297.Google Scholar
Chandna, A., Pennefather, P.M., Kovács, I., & Norcia, A.M. (2001). Contour integration deficits in anisometropic amblyopia. Investigative Ophthalmology and Visual Science 42, 875878.Google Scholar
Daw, N.W. (1995). Visual Development. New York: Plenum Press.
Demanins, R., Hess, R.F., Williams, C.B., & Keeble, D.R.T. (1999). The orientation discrimination deficit in strabismic amblyopia depends on stimulus bandwidth. Vision Research 39, 40184031.Google Scholar
Finney, D.J. (1971). Probit Analysis. New York: Cambridge University Press.
Flom, M.C. & Bedell, H.E. (1985). Identifying amblyopia using associated conditions, acuity, and nonacuity features. American Journal of Optometry and Physiological Optics 62, 153160.Google Scholar
Giaschi, D.E., Regan, D., Kraft, S.P., & Hong, X.H. (1992). Defective processing of motion-defined form in the fellow eye of patients with unilateral amblyopia. Investigative Ophthalmology and Visual Science 33, 24832489.Google Scholar
Glass, L. (1969). Moire effect from random dots. Nature 223, 578580.Google Scholar
Goodyear, B.G., Nicolle, D.A., Humphrey, G.K., & Menon, R.S. (2000). BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. Journal of Neurophysiology 84, 19071913.Google Scholar
Goodyear, B.G., Nicolle, D.A., & Menon, R.S. (2002). High resolution fMRI of ocular dominance columns within the visual cortex of human amblyopes. Strabismus 10, 129136.Google Scholar
Harwerth, R.S., Smith, E.L., Boltz, R.L., Crawford, M.L.J., & von Noorden, G.K. (1983). Behavioral studies on the effect of abnormal early visual experience: Spatial modulation sensitivity. Vision Research 23, 15011510.Google Scholar
Harwerth, R.S., Smith, E.L. 3rd, Duncan, G.C., Crawford, M.L., von Noorden, G.K. (1986). Multiple sensitive periods in the development of the primate visual system. Science 232, 235238.Google Scholar
Hendrickson, A.E., Movshon, J.A., Eggers, H.M., Gizzi, M.S., Boothe, R.G., & Kiorpes, L. (1987). Effects of early unilateral blur on the macaque's visual system. II. Anatomical observations. Journal of Neuroscience 7(5), 13271339.Google Scholar
Hess, R.F. & Holliday, I.E. (1992). The spatial localization deficit in amblyopia. Vision Research 32, 13191339.Google Scholar
Hess, R.F. & Field, D.J. (1994). Is the spatial deficit in strabismic amblyopia due to loss of cells or an uncalibrated disarray of cells? Vision Research 34, 33973406.Google Scholar
Hess, R.F. & Demanins, R. (1998). Contour integration in anisometropic amblyopia. Vision Research 38, 889894.Google Scholar
Hess, R.F., Campbell, F.W., & Greenhalgh, T. (1978). On the nature of the neural abnormality in human amblyopia: neural aberration and neural sensitivity loss. Pflugers Archiv fur die gesamte Physiologie 377, 201207.Google Scholar
Hess, R.F., Field, D.J., & Watt, R.J. (1990). The puzzle of amblyopia. In Vision: Coding and Efficiency, ed. Blakemore, C., pp. 267280. Cambridge: Cambridge University Press.
Hess, R.F., McIlhagga, W., & Field, D.J. (1997). Contour integration in strabismic amblyopia: The sufficiency of an explanation based on positional uncertainty. Vision Research 37, 31453161.Google Scholar
Horton, J.C., Hocking, D.R., & Kiorpes, L. (1997). Pattern of ocular dominance columns and cytochrome oxidase activity in a macaque monkey with naturally occurring anisometropic amblyopia. Visual Neuroscience 14, 681689.Google Scholar
Imamura, K., Richter, H., Fischer, H., Lennerstrand, G., Franzen, O., Rydberg, A., Andersson, J., Schneider, H., Onoe, H., Watanabe, Y., & Langstrom, B. (1997). Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia. Neuroscience Letters 225, 173176.Google Scholar
Kandel, G.L., Grattan, P.E., & Bedell, H.E. (1980). Are the dominant eyes of amblyopes normal? American Journal of Optometry and Physiological Optics 57, 16.Google Scholar
Kiorpes, L. (1992). Effect of strabismus on the development of vernier acuity and grating acuity in monkeys. Visual Neuroscience 9, 253259.Google Scholar
Kiorpes, L. (2001). Sensory processing: Animal models of amblyopia. In Amblyopia: A Multidisciplinary Approach, ed. Moseley, M. & Fielder, A., pp. 118. Oxford: Butterworth-Heineman Press.
Kiorpes, L. (2003). Amblyopic deficits in contrast sensitivity do not predict deficits in global perception. Investigative Ophthalmology and Visual Science 44S, 3185.Google Scholar
Kiorpes, L. & Bassin, S.A. (2003). Development of contour integration in macaque monkeys. Accompanying manuscript.
Kiorpes, L. & Boothe, R.G. (1984). Accommodative range in amblyopic monkeys. Vision Research 24, 18291834.Google Scholar
Kiorpes, L. & Movshon, J.A. (1995). The effects of blur and positional jitter on vernier acuity in normal and amblyopic macaque monkeys. Perception 24S, 38.Google Scholar
Kiorpes, L. & Wallman, J. (1995). Does experimentally-induced amblyopia cause hyperopia in monkeys? Vision Research 35, 12891297.Google Scholar
Kiorpes, L. & Movshon, J.A. (1996). Amblyopia: A developmental disorder of the central visual pathways. Cold Spring Harbor Symposium on Quantitative Biology 61, 3948.Google Scholar
Kiorpes, L. & Movshon, J.A. (1998). Peripheral and central factors limiting the development of contrast sensitivity in macaque monkeys. Vision Research 38, 6170.Google Scholar
Kiorpes, L. & McKee, S.P. (1999). Neural mechanisms underlying amblyopia. Current Opinion in Neurobiology 9, 480486.Google Scholar
Kiorpes, L. & Movshon, J.A. (2003). Neural limitations on visual development in primates. In The Visual Neurosciences, ed. L.M. Chalupa, J.S. Werner. MIT Press, in press.
Kiorpes, L., Carlson, M.R., & Alfi., D. (1989). Development of visual acuity in experimentally strabismic monkeys. Clinical Vision Sciences 4, 95106.Google Scholar
Kiorpes, L., Kiper, D.C., & Movshon, J.A. (1993). Contrast sensitivity and vernier acuity in amblyopic monkeys. Vision Research 33, 23012311.Google Scholar
Kiorpes, L., Kiper, D.C., O'Keefe, L.P., Cavanaugh, J.R., & Movshon, J.A. (1998). Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. Journal of Neuroscience 18, 64116424.Google Scholar
Kiorpes, L., Tang, C., & Movshon, J.A. (1999). Factors limiting contrast sensitivity in experimentally amblyopic macaque monkeys. Vision Research 39, 41524160.Google Scholar
Kiper, D.C. (1994). Spatial phase discrimination in monkeys with experimental strabismus. Vision Research 34, 437447.Google Scholar
Kiper, D.C. & Kiorpes, L. (1994). Suprathreshold contrast sensitivity in experimentally strabismic monkeys. Vision Research 34, 15751583.Google Scholar
Kovács, I. (1996). Gestalten of today: Early processing of visual contours and surfaces. Behavioural Brain Research 82, 111.Google Scholar
Kovács, J., Kozma, P., Fehér, Á., Benedek, G. (1999). Late maturation of visual spatial integration in humans. Proc. Natl. Acad. Sci. USA 96, 1220412209.Google Scholar
Kovács, I., Polat, U., Pennefather, P.M., Chandna, A., & Norcia, A.M. (2000). A new test of contour integration deficits in patients with a history of disrupted binocular experience during visual development. Vision Research 40, 17751783.Google Scholar
Kozma, P., Kiorpes, L., & Movshon, J.A. (2000). Contour integration in amblyopic monkeys. Investigative Ophthalmology and Visual Science 41S, 703.Google Scholar
Kozma, P., Deák, A., Janáky, M., & Benedek, G. (2001). Effect of late surgery for acquired esotropia on visual evoked potentials. Journal of Pediatric Ophthalmology and Strabismus 38, 8388.Google Scholar
Leguire, L.E., Rogers, G.L., & Bremer, D.L. (1990). Amblyopia: The normal eye is not normal. Journal of Pediatric Ophthalmology and Strabismus 27, 3238.Google Scholar
Levi, D.M. & Klein, S.A. (1983). Spatial localization in normal and amblyopic vision. Vision Research 23, 10051017.Google Scholar
Levi, D.M. & Klein, S.A. (1985). Vernier acuity, crowding, and amblyopia. Vision Research 25, 979991.Google Scholar
Levi, D.M. & Carkeet, A. (1993). Amblyopia: A consequence of abnormal visual development. In Early Visual Development: Normal and Abnormal, ed. Simons, K., pp. 391408. New York: Oxford University Press.
Levi, D.M. & Sharma, V. (1998). Integration of local orientation in strabismic amblyopia. Vision Research 38, 775781.Google Scholar
Levi, D.M. & Klein, S.A. (2003). Noise provides some new signals about the spatial vision of amblyopes. Journal of Neuroscience 23, 25222526.Google Scholar
Levi, D.M., Klein, S.A., & Wang, H. (1994). Discrimination of position and contrast in amblyopic and peripheral vision. Vision Research 34, 32933314.Google Scholar
Levi, D.M., Klein, S.A., Sharma, V., & Nguyen, L. (2000). Detecting disorder in spatial vision. Vision Research 40, 23072327.Google Scholar
Lowel, S. & Engelmann, R. (2002). Neuroanatomical and neurophysiological consequences of strabismus: Changes in the structural and functional organization of the primary visual cortex in cats with alternating fixation and strabismic amblyopia. Strabismus 10, 95105.Google Scholar
Lowel, S. & Singer, W. (1992). Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255, 209212.Google Scholar
Malach, R., Amir, Y., Harel, M., & Grinvald, A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 90, 1046910473.Google Scholar
McKee, S.P., Levi, D.M., & Movshon, J.A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision 3, 380405.Google Scholar
Mitchell, D.E., Freeman, R.D., Millodot, M., & Haegerstrom, G. (1973). Meridional amblyopia: Evidence for modification of the human visual system by early visual experience. Vision Research 13, 535558.Google Scholar
Movshon, J.A., Eggers, H.M., Gizzi, M.S., Hendrickson, A.E., Kiorpes, L., & Boothe, R.G. (1987). Effects of early unilateral blur on the macaque's visual system. III. Physiological observations. Journal of Neuroscience 7(5), 13401351.Google Scholar
Movshon, J.A., Hawken, M.J., Kiorpes, L., Skoczenski, A.M., Tang, C., & O'Keefe, L.P. (1994). Visual noise masking in macaque LGN neurons. Investigative Ophthalmology and Visual Science 35S, 1662.Google Scholar
Murphy, K.M., Pegado, V.D., Fenstemaker, S.B., Jones, D.G., Kiorpes, L., & Movshon, J.A. (1998). Spacing of cytochrome oxidase blobs in normal and strabismic monkeys. Cerebral Cortex 8, 237244.Google Scholar
Mussap, A.J. & Levi, D.M. (1999). Orientation-based texture segmentation in strabismic amblyopia. Vision Research 39, 411418.Google Scholar
Mussap, A.J. & Levi, D.M. (2000). Amblyopic deficit in detecting a dotted line in noise. Vision Research 40, 32973307.Google Scholar
Pelli, D.G. (1990). The quantum efficiency of vision. In Vision: Coding and Efficiency, ed. Blakemore, C., pp. 324. Cambridge: Cambridge University Press.
Pennefather, P.M., Chandna, A., Kovacs, I., Polat, U., & Norcia, A.M. (1999). Contour detection threshold: Repeatability and learning with ‘contour cards’. Spatial Vision 12, 257266.Google Scholar
Pettet, M.W., McKee, S.P., & Grzywacz, N.M. (1998). Constraints on long range interactions mediating contour detection. Vision Research 38, 865879.Google Scholar
Popple, A.V. & Levi, D.M. (2000). Amblyopes see true alignment where normal observers see illusory tilt. Proceedings of the National Academy of Sciences of the U.S.A. 97, 1166711672.Google Scholar
Rentschler, I. & Hilz, R. (1979). Abnormal orientation selectivity in both eyes of strabismic amblyopes. Experimental Brain Research 37, 187191.Google Scholar
Roelfsema, P.R., Konig, P., Engel, A.K., Sireteanu, R., & Singer, W. (1994). Reduced synchronization in the visual cortex of cats with strabismic amblyopia. European Journal of Neuroscience 6, 16451655.Google Scholar
Sharma, V., Levi, D.M., & Klein, S.A. (2000). Undercounting features and missing features: evidence for a high-level deficit in strabismic amblyopia. Nature Neuroscience 3(5), 496501.Google Scholar
Sireteanu, R. & Fronius, M. (1989). Different patterns of retinal correspondence in the central and peripheral visual field of strabismics. Investigative Ophthalmology and Visual Science 30, 20232033.Google Scholar
Smith, E.L. III, Harwerth, R.S., & Crawford, M.L.J. (1985). Spatial contrast sensitivity deficits in monkeys produced by optically induced anisometropia. Investigative Ophthalmology and Visual Science 26, 330342.Google Scholar
Smith, E.L. III, Chino, Y., Ni, J., Cheng, H., Crawford, M.L.J., & Harwerth, R.S. (1997). Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision. Journal of Neurophysiology 78, 13531362.Google Scholar
Tychsen, L. & Burkhalter, A. (1992). Naturally-strabismic primate lacks intrinsic horizontal connections for binocular vision in striate cortex. Society for Neuroscience Abstracts 18, 1455.Google Scholar
Tychsen, L. & Burkhalter, A. (1995). Neuroanatomic abnormalities of primary visual cortex in macaque monkeys with infantile esotropia: Preliminary results. Journal of Pediatric Ophthalmology and Strabismus 32, 323328.Google Scholar
Tychsen, L. & Burkhalter, A. (1997). Nasotemporal asymmetries in V1: Ocular dominance columns of infant, adult, and strabismic macaque monkeys. Journal of Comparative Neurology 388, 3246.Google Scholar
Tychsen, L., Hanaway, K., & Burkhalter, A. (1996). Axonal and dendritic circuits of V1 ocular dominance columns in normal and strabismic macaque. Society for Neuroscience Abstracts 22, 1728.Google Scholar
Verghese, P. & Levi, D.M. (2003). Meridional amblyopia impairs contour integration. Investigative Ophthalmology and Visual Science 44S, 3187.Google Scholar
Wang, H., Levi, D.M., & Klein, S.A. (1998). Spatial uncertainty and sampling efficiency in amblyopic position acuity. Vision Research 38, 12391251.Google Scholar
Watt, R.J. & Hess, R.F. (1987). Spatial information and uncertainty in anisometropic amblyopia. Vision Research 27, 661674.Google Scholar