Article contents
Dendritic integration in ganglion cells of the mudpuppy retina
Published online by Cambridge University Press: 02 June 2009
Abstract
Computer simulations were carried out to evaluate the influence of varying the membrane resistance (Rm) on the dendritic integration capacity of three classes of ganglion cells in the mudpuppy (Necturus maculosus) retina. Three broadly different morphological classes of ganglion cells were selected for this study and represent the range of dendritic tree sizes found in the ganglion cell population of this species. Simulations were conducted on anatomical data obtained from cells stained with horseradish peroxidase; each cell was traced, using a computer as an entry device and later converted to a compartmental (electrical) representation of the cell. Computer-simulation analysis used a time-variant conductance change which was similar in waveform to light-activated bipolar cell input. The simulated membrane resistance for each cell varied between 5000 and 100,000 Ω cm2, and conductance changes were introduced into different regions of the soma-dendritic tree to evaluate dendritic integration efficiency. When higher values of Rm are used, even the largest cells become electrotonically compact and attenuation of voltage responses is minimized from distal to soma regions. Responses were less attenuated from proximal to distal regions of the cell because of the favorable impedance matching, and because less current is required to polarize small “sealed” dendritic terminations. Steady-state responses integrate more effectively than transient responses, particularly when Rm is high, since transient responses were more attenuated by the membrane capacitance. The possibility that Rm is a dynamic property of retinal ganglion cells is discussed in view of the functional organization of dendritic integration efficiency as Rm fluctuates from low to high values.
- Type
- Research Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1995
References
- 21
- Cited by