Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T19:22:12.811Z Has data issue: false hasContentIssue false

Development of face discrimination abilities, and relationship to magnocellular pathway development, between childhood and adulthood

Published online by Cambridge University Press:  02 August 2013

PAMELA M. PALLETT
Affiliation:
Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio
KAREN R. DOBKINS*
Affiliation:
Department of Psychology, University of California, San Diego, La Jolla, California
*
*Address correspondence to: Karen R. Dobkins, Ph.D., Department of Psychology, University of California, San Diego, La Jolla, CA 92093. E-mail: kdobkins@ucsd.edu

Abstract

The current study tested the development of face and object processing in young children (mean age = 5.24 years), adolescents (mean age = 15.8 years), and adults (mean age = 21.1 years) using stimuli that were equated for low-level visual characteristics (luminance, contrast, and spatial frequency make-up) and methods that equate for difficulty across ages. We also tested sensitivity to luminance and chromatic contrast (i.e., thought to be mediated primarily by the subcortical Magnocellular (M) and Parvocellular (P) pathways, respectively) to determine whether age-related improvements in face or object discrimination were driven by age-related changes in the M and/or P pathways. Results showed a selective age-related improvement in face sensitivity and a relationship between age-related increases in face sensitivity and luminance contrast sensitivity. These results add to the mounting evidence that the M pathway may influence face processing.

Type
Linking performance and neural mechanisms in development and disability
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., Baron-Cohen, S. & Tranel, D. (2002). Impaired recognition of social emotions following amygdala damage. Journal of Cognitive Neuroscience 14, 12641274.CrossRefGoogle ScholarPubMed
Adolphs, R., Gosselin, F., Buchanan, T.W., Tranel, D., Schyns, P. & Damasio, A.R. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature 433, 6872.CrossRefGoogle ScholarPubMed
Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience 15, 600609.CrossRefGoogle ScholarPubMed
Barbas, H. (1995). Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neuroscience and Biobehavioral Reviews 19, 499510.CrossRefGoogle ScholarPubMed
Beazley, L.D., Illingworth, D.J., Jahn, A. & Greer, D.V. (1980). Contrast sensitivity in children and adults. The British Journal of Ophthalmology 64, 863866.CrossRefGoogle ScholarPubMed
Benedek, G., Benedek, K., Keri, S. & Janaky, M. (2003). The scotopic low-frequency spatial contrast sensitivity develops in children between the ages of 5 and 14 years. Neuroscience Letters 345, 161164.CrossRefGoogle Scholar
Boon, M.Y., Suttle, C.M., Henry, B.I. & Dain, S.J. (2009). Dynamics of chromatic visual system processing differ in complexity between children and adults. Journal of Vision 9, 117.CrossRefGoogle ScholarPubMed
Bosworth, R.G. & Dobkins, K.R. (2009). Chromatic and luminance contrast sensitivity in fullterm and preterm infants. Journal of Vision 9, 1116.CrossRefGoogle ScholarPubMed
Brace, N.A., Hole, G.J., Kemp, R.I., Pike, G.E., Van Duuren, M. & Norgate, L. (2001). Developmental changes in the effect of inversion: Using a picture book to investigate face recognition. Perception 30, 8594.CrossRefGoogle ScholarPubMed
Brainard, D.H. (1997). The psychophysics toolbox. Spatial Vision 10, 433436.CrossRefGoogle ScholarPubMed
Bullier, J. & Nowak, L.G. (1995). Parallel versus serial processing: New vistas on the distributed organization of the visual system. Current Opinion in Neurobiology 5, 497503.CrossRefGoogle ScholarPubMed
Carey, S. & Diamond, R. (1977). From piecemeal to configurational representation of faces. Science 195, 312314.CrossRefGoogle ScholarPubMed
Carey, S., Diamond, R. & Woods, B. (1980). Development of face recognition: A maturational component? Developmental Psychology 16, 4, 257269.CrossRefGoogle Scholar
Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R.J. & Reinoso-Suarez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex 10, 220242.CrossRefGoogle ScholarPubMed
Chen, C.M., Lakatos, P., Shah, A.S., Mehta, A.D., Givre, S.J., Javitt, D.C. & Schroeder, C.E. (2007). Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. Cerebral Cortex 17, 15611569.CrossRefGoogle ScholarPubMed
Crognale, M.A. (2002). Development, maturation, and aging of chromatic visual pathways: VEP results. Journal of Vision 2, 438450.CrossRefGoogle ScholarPubMed
Crookes, K. & McKone, E. (2009). Early maturity of face recognition: No childhood development of holistic processing, novel face encoding, or face-space. Cognition 111, 219247.CrossRefGoogle ScholarPubMed
de Heering, A., Rossion, B. & Maurer, D. (2012). Developmental changes in face recognition during childhood: Evidence from upright and inverted faces. Cognitive Development 27, 1727.CrossRefGoogle Scholar
Delorme, A. & Thorpe, S.J. (2001). Face identification using one spike per neuron: Resistance to image degradations. Neural Networks: The Official Journal of the International Neural Network Society 14, 795803.CrossRefGoogle ScholarPubMed
Deruelle, C., Rondan, C., Gepner, B. & Tardif, C. (2004). Spatial frequency and face processing in children with autism and Asperger syndrome. Journal of Autism and Developmental Disorders 34, 199210.CrossRefGoogle ScholarPubMed
Diamond, R. & Carey, S. (1977). Developmental changes in the representation of faces. Journal of Experimental Child Psychology 23, 122.CrossRefGoogle ScholarPubMed
Dobkins, K.R., Anderson, C.M. & Lia, B. (1999). Infant temporal contrast sensitivity functions (tCSFs) mature earlier for luminance than for chromatic stimuli: Evidence for precocious magnocellular development? Vision Research 39, 32233239.CrossRefGoogle ScholarPubMed
Dobkins, K.R., Bosworth, R.G. & McCleery, J.P. (2009). Effects of gestational length, gender, postnatal age, and birth order on visual contrast sensitivity in infants. Journal of Vision 9, 1121.CrossRefGoogle ScholarPubMed
Dobkins, K.R. & Teller, D.Y. (1996 a). Infant contrast detectors are selective for direction of motion. Vision Research 36, 281294.CrossRefGoogle ScholarPubMed
Dobkins, K.R. & Teller, D.Y. (1996 b). Infant motion: Detection (M:D) ratios for chromatically defined and luminance-defined moving stimuli. Vision Research 36, 32933310.CrossRefGoogle Scholar
Farroni, T., Johnson, M.H., Menon, E., Zulian, L., Faraguna, D. & Csibra, G. (2005). Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proceedings of the National Academy of Sciences of the United States of America 102, 1724517250.CrossRefGoogle ScholarPubMed
Fiorentini, A., Maffei, L. & Sandini, G. (1983). The role of high spatial frequencies in face perception. Perception 12, 195201.CrossRefGoogle ScholarPubMed
Freire, A., Lee, K. & Symons, L.A. (2000). The face-inversion effect as a deficit in the encoding of configural information: Direct evidence. Perception 29, 159170.CrossRefGoogle ScholarPubMed
Garrido, M.I., Barnes, G.R., Sahani, M. & Dolan, R.J. (2012). Functional evidence for a dual route to amygdala. Current Biology: CB 22, 129134.CrossRefGoogle ScholarPubMed
Gauthier, I., Behrmann, M. & Tarr, M.J. (1999). Can face recognition really be dissociated from object recognition? Journal of Cognitive Neuroscience 11, 349370.CrossRefGoogle ScholarPubMed
Gauthier, I., Behrmann, M. & Tarr, M.J. (2004). Are Greebles like faces? Using the neuropsychological exception to test the rule. Neuropsychologia 42, 19611970.CrossRefGoogle ScholarPubMed
Germine, L.T., Duchaine, B. & Nakayama, K. (2011). Where cognitive development and aging meet: Face learning ability peaks after age 30. Cognition 118, 201210.CrossRefGoogle ScholarPubMed
Ghashghaei, H.T., Hilgetag, C.C. & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 34, 905923.CrossRefGoogle ScholarPubMed
Goffaux, V. & Rossion, B. (2007). Face inversion disproportionately impairs the perception of vertical but not horizontal relations between features. Journal of Experimental Psychology: Human Perception and Performance 33, 9951001.Google Scholar
Golarai, G., Ghahremani, D.G., Whitfield-Gabrieli, S., Reiss, A., Eberhardt, J.L., Gabrieli, J.D.E. & Grill-Spector, K. (2007). Differential development of high-level visual cortex correlates with category-specific recognition memory. Nature Neuroscience 10, 512522.CrossRefGoogle ScholarPubMed
Golarai, G., Liberman, A., Yoon, J.M. & Grill-Spector, K. (2010). Differential development of the ventral visual cortex extends through adolescence. Frontiers in Human Neuroscience 3, 80.Google ScholarPubMed
Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y. & Malach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187203.CrossRefGoogle ScholarPubMed
Gunther, K.L. & Dobkins, K.R. (2002). Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye. Vision Research 42, 13671378.CrossRefGoogle ScholarPubMed
Jeffery, L., McKone, E., Haynes, R., Firth, E., Pellicano, E. & Rhodes, G. (2010). Four-to-six-year-old children use norm-based coding in face-space. Journal of Vision 10, 18.CrossRefGoogle ScholarPubMed
Johnson, M.H. (2005). Subcortical face processing. Nature Reviews Neuroscience 6, 766774.CrossRefGoogle ScholarPubMed
Johnson, M.H. (2011). Face processing as a brain adaptation at multiple timescales. Quarterly Journal of Experimental Psychology 64, 18731888.CrossRefGoogle ScholarPubMed
Jones, E.G. & Burton, H. (1976). A projection from the medial pulvinar to the amygdala in primates. Brain Research 104, 142147.CrossRefGoogle Scholar
Kanwisher, N., McDermott, J. & Chun, M.M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17, 43024311.CrossRefGoogle ScholarPubMed
Kanwisher, N., Tong, F. & Nakayama, K. (1998). The effect of face inversion on the human fusiform face area. Cognition 68, B1B11.CrossRefGoogle ScholarPubMed
Knoblauch, K., Vital-Durand, F. & Barbur, J.L. (2001). Variation of chromatic sensitivity across the life span. Vision Research 41, 2336.CrossRefGoogle ScholarPubMed
Krolak-Salmon, P., Henaff, M.A., Vighetto, A., Bertrand, O. & Mauguiere, F. (2004). Early amygdala reaction to fear spreading in occipital, temporal, and frontal cortex: A depth electrode ERP study in human. Neuron 42, 665676.CrossRefGoogle ScholarPubMed
Kveraga, K., Boshyan, J. & Bar, M. (2007). Magnocellular projections as the trigger of top-down facilitation in recognition. Journal of Neuroscience 27, 1323213240.CrossRefGoogle ScholarPubMed
Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H.J., Hawk, S.T. & van Knippenberg, A. (2010). Presentation and validation of the Radboud Faces Database. Cognition & Emotion 24, 13771388.CrossRefGoogle Scholar
Lennie, P. & D’Zmura, M. (1988). Mechanisms of color vision. Critical Reviews in Neurobiology 3, 333400.Google ScholarPubMed
Lindsey, D.T. & Teller, D.Y. (1990). Motion at isoluminance: Discrimination/detection ratios for moving isoluminant gratings. Vision Research 30, 17511761.CrossRefGoogle ScholarPubMed
Linke, R., De Lima, A.D., Schwegler, H. & Pape, H.C. (1999). Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: Possible substrates of a subcortical visual pathway to the amygdala. The Journal of Comparative Neurology 403, 158170.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Lundy, B.A., Jackson, J.W. & Haaf, R.A. (2001). Stimulus properties, attentional limitations, and young children’s face recognition. Perceptual and Motor Skills 92, 919929.CrossRefGoogle Scholar
Macchi Cassia, V., Picozzi, M., Kuefner, D., Bricolo, E. & Turati, C. (2009). Holistic processing for faces and cars in preschool-aged children and adults: Evidence from the composite effect. Developmental Science 12, 236248.CrossRefGoogle Scholar
Macchi Cassia, V., Turati, C. & Schwarzer, G. (2011). Sensitivity to spacing changes in faces and nonface objects in preschool-aged children and adults. Journal of Experimental Child Psychology 109, 454467.CrossRefGoogle ScholarPubMed
Maunsell, J.H., Nealey, T.A. & DePriest, D.D. (1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 10, 33233334.CrossRefGoogle ScholarPubMed
McKone, E. & Boyer, B.L. (2006). Sensitivity of 4-year-olds to featural and second-order relational changes in face distinctiveness. Journal of Experimental Child Psychology 94, 134162.CrossRefGoogle ScholarPubMed
McKone, E., Crookes, K., Jeffery, L. & Dilks, D.D. (2012). A critical review of the development of face recognition: Experience is less important than previously believed. Cognitive Neuropsychology 29, 174212.CrossRefGoogle ScholarPubMed
McKone, E., Crookes, K. & Kanwisher, N. (2009). The cognitive and neural development of face recognition in humans. In The Cognitive Neurosciences, ed. Gazzaniga, M.S. (4th ed), pp. 467482. Cambridge, MA: MIT Press.Google Scholar
Merigan, W.H. & Eskin, T.A. (1986). Spatio-temporal vision of macaques with severe loss of P beta retinal ganglion cells. Vision Research 26, 17511761.CrossRefGoogle ScholarPubMed
Merigan, W.H., Katz, L.M. & Maunsell, J.H. (1991). The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 11, 9941001.CrossRefGoogle ScholarPubMed
Merigan, W.H. & Maunsell, J.H. (1990). Macaque vision after magnocellular lateral geniculate lesions. Visual Neuroscience 5, 347352.CrossRefGoogle ScholarPubMed
Merigan, W.H. & Maunsell, J.H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience 16, 369402.CrossRefGoogle ScholarPubMed
Mondloch, C.J., Le Grand, R. & Maurer, D. (2002). Configural face processing develops more slowly than featural face processing. Perception 31, 553566.CrossRefGoogle ScholarPubMed
Mondloch, C.J., Maurer, D. & Ahola, S. (2006). Becoming a face expert. Psychological Science 17, 930934.CrossRefGoogle ScholarPubMed
Mondloch, C.J., Pathman, T., Maurer, D., Le Grand, R. & de Schonen, S. (2007). The composite face effect in six-year-old children: Evidence of adult-like holistic face processing. Visual Cognition 15, 564577.CrossRefGoogle Scholar
Morris, J.S., DeGelder, B., Weiskrantz, L. & Dolan, R.J. (2001). Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain: A Journal of Neurology 124, 12411252.CrossRefGoogle Scholar
Morris, J.S., Ohman, A. & Dolan, R.J. (1999). A subcortical pathway to the right amygdala mediating “unseen” fear. Proceedings of the National Academy of Sciences of the United States of America 96, 16801685.CrossRefGoogle Scholar
Pascalis, O., de Vivies, X.D., Anzures, G., Quinn, P.C., Slater, A.M., Tanaka, J.W. & Lee, K. (2011). Development of face processing. Wiley Interdisciplinary Reviews. Cognitive Science 2, 666675.CrossRefGoogle ScholarPubMed
Pasley, B.N., Mayes, L.C. & Schultz, R.T. (2004). Subcortical discrimination of unperceived objects during binocular rivalry. Neuron 42, 163172.CrossRefGoogle ScholarPubMed
Passarotti, A.M., Paul, B.M., Bussier, J.R., Buxton, R.B., Wong, E.C. & Stiles, J. (2003). The development of face and location processing: An fMRI study. Developmental Science 6, 100117.CrossRefGoogle Scholar
Peelen, M.V., Glaser, B., Vuilleumier, P. & Eliez, S. (2009). Differential development of selectivity for faces and bodies in the fusiform gyrus. Developmental Science 12, F16F25.CrossRefGoogle ScholarPubMed
Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision 10, 437442.CrossRefGoogle ScholarPubMed
Pellicano, E. & Rhodes, G. (2003). Holistic processing of faces in preschool children and adults. Psychological Science 14, 618622.CrossRefGoogle ScholarPubMed
Pellicano, E., Rhodes, G. & Peters, M. (2006). Are preschoolers sensitive to configural information in faces? Developmental Science 9, 270277.CrossRefGoogle ScholarPubMed
Pessoa, L. & Adolphs, R. (2010). Emotion processing and the amygdala: From a ‘low road’ to ‘many roads’ of evaluating biological significance. Nature Reviews Neuroscience 11, 773783.CrossRefGoogle ScholarPubMed
Picozzi, M., Cassia, V.M., Turati, C. & Vescovo, E. (2009). The effect of inversion on 3- to 5-year-olds’ recognition of face and nonface visual objects. Journal of Experimental Child Psychology 102, 487502.CrossRefGoogle ScholarPubMed
Pitcher, D., Charles, L., Devlin, J.T., Walsh, V. & Duchaine, B. (2009). Triple dissociation of faces, bodies, and objects in extrastriate cortex. Current Biology: CB 19, 319324.CrossRefGoogle ScholarPubMed
Rempel-Clower, N.L. & Barbas, H. (2000). The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cerebral Cortex 10, 851865.CrossRefGoogle ScholarPubMed
Richler, J.J., Mack, M.L., Palmeri, T.J. & Gauthier, I. (2011). Inverted faces are (eventually) processed holistically. Vision Research 51, 333342.CrossRefGoogle ScholarPubMed
Rolls, E.T., Cowey, A. & Bruce, V. (1992). Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 335, 1121.Google ScholarPubMed
Romanski, L.M., Giguere, M., Bates, J.F. & Goldman-Rakic, P.S. (1997). Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. The Journal of Comparative Neurology 379, 313332.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Rossion, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. Acta Psychologica 128, 274289.CrossRefGoogle ScholarPubMed
Rotshtein, P., Geng, J.J., Driver, J. & Dolan, R.J. (2007). Role of features and second-order spatial relations in face discrimination, face recognition, and individual face skills: Behavioral and functional magnetic resonance imaging data. Journal of Cognitive Neuroscience 19, 14351452.CrossRefGoogle ScholarPubMed
Sangrigoli, S. & de Schonen, S. (2004). Effect of visual experience on face processing: A developmental study of inversion and non-native effects. Developmental Science 7, 7487.CrossRefGoogle ScholarPubMed
Scherf, K.S., Behrmann, M., Humphreys, K. & Luna, B. (2007). Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Developmental Science 10, F1530.CrossRefGoogle ScholarPubMed
Schiller, P.H., Logothetis, N.K. & Charles, E.R. (1990). Functions of the colour-opponent and broad-band channels of the visual system. Nature 343, 6870.CrossRefGoogle ScholarPubMed
Schiller, P.H., Malpeli, J.G. & Schein, S.J. (1979). Composition of geniculostriate input to superior colliculus of the rhesus monkey. Journal of Neurophysiology 42, 11241133.CrossRefGoogle ScholarPubMed
Searcy, J.H. & Bartlett, J.C. (1996). Inversion and processing of component and spatial-relational information in faces. Journal of Experimental Psychology. Human Perception and Performance 22, 904915.CrossRefGoogle ScholarPubMed
Sekuler, A.B., Gaspar, C.M., Gold, J.M. & Bennett, P.J. (2004). Inversion leads to quantitative, not qualitative, changes in face processing. Current Biology: CB 14, 391396.CrossRefGoogle Scholar
Sergent, J. (1985). Influence of task and input factors on hemispheric involvement in face processing. Journal of Experimental Psychology: Human Perception and Performance, 11, 6, 846861.Google ScholarPubMed
Shapley, R. (1990). Visual sensitivity and parallel retinocortical channels. Annual Review of Psychology 41, 635658.CrossRefGoogle ScholarPubMed
Short, L.A., Hatry, A.J. & Mondloch, C.J. (2011). The development of norm-based coding and race-specific face prototypes: An examination of 5- and 8-year-olds’ face space. Journal of Experimental Child Psychology 108, 338357.CrossRefGoogle ScholarPubMed
Skottun, B.C. (2000). The magnocellular deficit theory of dyslexia: The evidence from contrast sensitivity. Vision Research 40, 111127.CrossRefGoogle ScholarPubMed
Spezio, M.L., Huang, P.Y., Castelli, F. & Adolphs, R. (2007). Amygdala damage impairs eye contact during conversations with real people. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 27, 39943997.CrossRefGoogle ScholarPubMed
Tanaka, J.W. & Corneille, O. (2007). Typicality effects in face and object perception: Further evidence for the attractor field model. Perception & Psychophysics 69, 619627.CrossRefGoogle ScholarPubMed
Tanaka, J.W. & Farah, M.J. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology. A-Human Experimental Psychology 46, 225245.CrossRefGoogle ScholarPubMed
Tanaka, J.W., Meixner, T.L. & Kantner, J. (2011). Exploring the perceptual spaces of faces, cars and birds in children and adults. Developmental Science 14, 762768.CrossRefGoogle ScholarPubMed
Taylor, M.M. & Creelman, C.D. (1967). PEST: Efficiency estimates on probability functions. Journal of the Acoustical Society of America 41, 782787.CrossRefGoogle Scholar
Taylor, M.J., McCarthy, G., Saliba, E. & Degiovanni, E. (1999). ERP evidence of developmental changes in processing of faces. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 110, 910915.CrossRefGoogle ScholarPubMed
Teller, D. (1982). Scotopic vision, color vision, and stereopsis in infants. Current Eye Research 2, 199210.CrossRefGoogle ScholarPubMed
Teller, D. (1984). Linking propositions. Vision Research 24, 12331246.CrossRefGoogle ScholarPubMed
Till, C., Westall, C.A., Koren, G., Nulman, I. & Rovet, J.F. (2005). Vision abnormalities in young children exposed prenatally to organic solvents. Neurotoxicology 26, 599613.CrossRefGoogle ScholarPubMed
Valentine, T. (1988). Upside-down faces: A review of the effect of inversion upon face recognition. British Journal of Psychology 79, 471491.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J.L., Driver, J. & Dolan, R.J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience 6, 624631.CrossRefGoogle ScholarPubMed
Whalen, P.J., Rauch, S.L., Etcoff, N.L., McInerney, S.C., Lee, M.B. & Jenike, M.A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 18, 411418.CrossRefGoogle ScholarPubMed
Wichmann, F.A. & Hill, N.J. (2001). The psychometric function: I. Fitting, sampling and goodness-of-fit. Perception & Psychophysics 63, 12931313.CrossRefGoogle ScholarPubMed
Winston, J.S., Vuilleumier, P. & Dolan, R.J. (2003). Effects of low-spatial frequency components of fearful faces on fusiform cortex activity. Current Biology: CB 13, 18241829.CrossRefGoogle ScholarPubMed
Yamashita, J.A, Hardy, J.L., De Valois, K.K. & Webster, M.A. (2005). Stimulus selectivity of figural aftereffects for faces. Journal of Experimental Psychology. Human Perception and Performance 31, 420437.CrossRefGoogle ScholarPubMed
Zhao, L. & Chubb, C. (2001). The size-tuning of the face-distortion after-effect. Vision Research 41, 29792994.CrossRefGoogle ScholarPubMed