Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T09:04:05.541Z Has data issue: false hasContentIssue false

Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina

Published online by Cambridge University Press:  18 February 2008

BAHAR ERIKÖZ
Affiliation:
National Vision Research Institute of Australia, Carlton, Australia Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
PATRICIA R. JUSUF
Affiliation:
National Vision Research Institute of Australia, Carlton, Australia Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
KUMIKO A. PERCIVAL
Affiliation:
National Vision Research Institute of Australia, Carlton, Australia Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
ULRIKE GRÜNERT
Affiliation:
National Vision Research Institute of Australia, Carlton, Australia Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia

Abstract

Different types of retinal ganglion cell show differences in their response properties. Here we investigated the question of whether these differences are related to the distribution of the synaptic input to the dendritic tree. We measured the distribution and density of synaptic input to the dendrites of midget and parasol ganglion cells in the retina of a New World monkey, the marmoset, Callithrix jacchus. Ganglion cells were retrogradely labeled by dye injection into parvocellular or magnocellular regions of the lateral geniculate nucleus and subsequently photo-filled. Presumed bipolar cell synapses were identified immunocytochemically using antibodies against the ribbon protein CtBP2 or the GluR4 subunit of the AMPA receptor. For all cells, colocalized immunoreactive puncta were distributed across the entire dendritic tree. The density of the presumed bipolar input to midget ganglion cells was comparable for both synaptic markers, suggesting that the AMPA receptor GluR4 subunit is expressed at all synapses between midget bipolar and midget ganglion cells. Midget ganglion cells had an average of nine colocalized immunoreactive puncta per 100 μm2 dendritic surface, and parasol cells had an average of seven colocalized immunoreactive puncta per 100 μm2 dendritic surface. The densities were comparable in different regions of the dendritic tree and were not influenced by the location of the cells with respect to the fovea. Our findings suggest that the differences in the response characteristics of midget and parasol cells are not due to differences in the density of synaptic input to their dendritic tree.

Type
Research Article
Copyright
© 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blessing, E.M., Solomon, S.G., Hashemi-Nezhad, M., Morris, B.J. & Martin, P.R. (2004). Chromatic and spatial properties of parvocellular cells in the lateral geniculate nucleus of the marmoset (Callithrix jacchus). Journal of Physiology 557, 229245.Google Scholar
Bordt, A.S., Hoshi, H., Yamada, E.S., Perryman-Stout, W.C. & Marshak, D.W. (2006). Synaptic input to OFF parasol ganglion cells in macaque retina. Journal of Comparative Neurology 498, 4657.Google Scholar
Calkins, D.J., Schein, S.J., Tsukamoto, Y. & Sterling, P. (1994). M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371, 7072.Google Scholar
Calkins, D.J. & Sterling, P. (1996). Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina. Nature 381, 613615.Google Scholar
Calkins, D.J. & Sterling, P. (2007). Microcircuitry for two types of achromatic ganglion cell in primate fovea. Journal of Neuroscience 27, 26462653.Google Scholar
Calkins, D.J., Tsukamoto, Y. & Sterling, P. (1998). Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. Journal of Neuroscience 18, 33733385.Google Scholar
Chichilnisky, E.J. & Kalmar, R.S. (2002). Functional asymmetries in ON and OFF ganglion cells of primate retina. Journal of Neuroscience 22, 27372747.Google Scholar
Dacey, D.M. & Lee, B.B. (1994). The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.Google Scholar
Dacey, D.M. & Petersen, M.R. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proceedings of the National Academy of Sciences of the U.S.A. 89, 96669670.Google Scholar
Dacey, D.M., Peterson, B.B., Robinson, F.R. & Gamlin, P.D. (2003). Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 1527.Google Scholar
Ghosh, K.K., Goodchild, A.K., Sefton, A.E. & Martin, P.R. (1996). Morphology of retinal ganglion cells in a New World monkey, the marmoset Callithrix jacchus. Journal of Comparative Neurology 366, 7692.Google Scholar
Ghosh, K.K. & Grünert, U. (1999). Synaptic input to small bistratified (blue-on) ganglion cells in the retina of a New World monkey, the marmoset Callithrix jacchus. Journal of Comparative Neurology 413, 417428.Google Scholar
Grünert, U., Haverkamp, S., Fletcher, E.L. & Wässle, H. (2002). Synaptic distribution of ionotropic glutamate receptors in the inner plexiform layer of the primate retina. Journal of Comparative Neurology 447, 138151.Google Scholar
Grünert, U., Lin, B. & Martin, P.R. (2003). Glutamate receptors at bipolar synapses in the inner plexiform layer of primate retina: Light microscopic analysis. Journal of Comparative Neurology 466, 136147.Google Scholar
Grünert, U. & Wässle, H. (1993). Immunocytochemical localization of glycine receptors in the mammalian retina. Journal of Comparative Neurology 335, 523537.Google Scholar
Harlow, E. & Lane, D. (1988). Antibodies. A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory.
Jacoby, R., Stafford, D., Kouyama, N. & Marshak, D. (1996). Synaptic inputs to ON parasol ganglion cells in the primate retina. Journal of Neuroscience 16, 80418056.Google Scholar
Jacoby, R.A., Wiechmann, A.F., Amara, S.G., Leighton, B.H. & Marshak, D.W. (2000). Diffuse bipolar cells provide input to OFF parasol ganglion cells in the macaque retina. Journal of Comparative Neurology 416, 618.Google Scholar
Jusuf, P.R., Martin, P.R. & Grünert, U. (2006a). Synaptic connectivity in the midget-parvocellular pathway of primate central retina. Journal of Comparative Neurology 494, 260274.Google Scholar
Jusuf, P.R., Martin, P.R. & Grünert, U. (2006b). Random wiring in the midget pathway of primate retina. Journal of Neuroscience 26, 39083917.Google Scholar
Kneussel, M. & Betz, H. (2000). Receptors, gephyrin and gephyrin-associated proteins: Novel insights into the assembly of inhibitory postsynaptic membrane specializations. Journal of Physiology 525, 19.Google Scholar
Kolb, H. & DeKorver, L. (1991). Midget ganglion cells of the parafovea of the human retina: A study by electron microscopy and serial section reconstructions. Journal of Comparative Neurology 303, 617636.Google Scholar
Kolb, H. & Marshak, D.W. (2003). The midget pathways of the primate retina. Documenta Ophthalmologica 106, 6781.Google Scholar
Leventhal, A.G., Rodieck, R.W. & Dreher, B. (1981). Retinal ganglion cell classes in the Old World monkey: Morphology and central projections. Science 213, 11391142.Google Scholar
Lin, B., Martin, P.R. & Grünert, U. (2002). Expression and distribution of ionotropic glutamate receptor subunits on parasol ganglion cells in the primate retina. Visual Neuroscience 19, 453465.Google Scholar
Lin, B., Martin, P.R., Solomon, S.G. & Grünert, U. (2000). Distribution of glycine receptor subunits on primate retinal ganglion cells: A quantitative analysis. European Journal of Neuroscience 12, 41554170.Google Scholar
Macri, J., Martin, P.R. & Grünert, U. (2000). Distribution of the α1 subunit of the GABAA receptor on midget and parasol ganglion cells in the retina of the common marmoset Callithrix jacchus. Visual Neuroscience 17, 437448.Google Scholar
Margolis, D.J. & Detwiler, P.B. (2007). Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. Journal of Neuroscience 27, 59946005.Google Scholar
Marshak, D.W., Yamada, E.S., Bordt, A.S. & Perryman, W.C. (2002). Synaptic input to an ON parasol ganglion cell in the macaque retina: A serial section analysis. Visual Neuroscience 19, 299305.Google Scholar
Martin, P.R. & Grünert, U. (1992). Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina. Journal of Comparative Neurology 323, 269287.Google Scholar
Masland, R.H. (2001). The fundamental plan of the retina. Nature Neuroscience 4, 877886.Google Scholar
Perry, V.H., Oehler, R. & Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12, 11011123.Google Scholar
Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. (1984). Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proceedings of the National Academy of Sciences of the U.S.A. 81, 72247227.Google Scholar
Polyak, S.L. (1941). The Retina. Chicago: The University of Chicago Press.
Pourcho, R.G. & Owczarzak, M.T. (1991). Glycine receptor immunoreactivity is localized at amacrine synapses in cat retina. Visual Neuroscience 7, 611618.Google Scholar
Qin, P. & Pourcho, R.G. (1999). AMPA-selective glutamate receptor subunits GluR2 and GluR4 in the cat retina: An immunocytochemical study. Visual Neuroscience 16, 11051114.Google Scholar
Sassoè-Pognetto, M., Kirsch, J., Grünert, U., Greferath, U., Fritschy, J.M., Möhler, H., Betz, H. & Wässle, H. (1995). Colocalization of gephyrin and GABAA-receptor subunits in the rat retina. Journal of Comparative Neurology 357, 114.Google Scholar
Sassoè-Pognetto, M., Wässle, H. & Grünert, U. (1994). Glycinergic synapses in the rod pathway of the rat retina: Cone bipolar cells express the α1 subunit of the glycine receptor. Journal of Neuroscience 14, 51315146.Google Scholar
Schmitt, B., Knaus, P., Becker, C.-M. & Betz, H. (1987). The Mr 93000 polypeptide of the postsynaptic glycine receptor complex is a peripheral membrane protein. Biochemistry 26, 805811.Google Scholar
Schmitz, F., Königstorfer, A. & Südhof, T.C. (2000). RIBEYE, a component of synaptic ribbons: A protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28, 857872.Google Scholar
Silveira, L.C., Saito, C.A., Lee, B.B., Kremers, J., da Silva Filho, M., Kilavik, B.E., Yamada, E.S. & Perry, V.H. (2004). Morphology and physiology of primate M- and P-cells. Progress in Brain Research 144, 2146.Google Scholar
Szmajda, B.A., Grünert, U. & Martin, P.R. (2005). Mosaic properties of midget and parasol ganglion cells in the marmoset retina. Visual Neuroscience 22, 395404.Google Scholar
Wässle, H. (1999). Parallel pathways from the outer to the inner retina in primates. In Color Vision: From Genes to Perception, ed. Gegenfurtner, K.R. & Sharpe, L.T., pp. 145162. Cambridge: Cambridge University Press.
Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews Neuroscience 5, 747757.Google Scholar
Watanabe, M. & Rodieck, R.W. (1989). Parasol and midget ganglion cells of the primate retina. Journal of Comparative Neurology 289, 434454.Google Scholar
Wilder, H.D., Grünert, U., Lee, B.B. & Martin, P.R. (1996). Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus. Visual Neuroscience 13, 335352.Google Scholar
Yamada, E.S., Silveira, L.C.L., Gomes, F.L. & Lee, B.B. (1996). The retinal ganglion cell classes of New World primates. Revista Brasileira de Biologia 56, 381396.Google Scholar
Zaghloul, K.A., Boahen, K. & Demb, J.B. (2003). Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. Journal of Neuroscience 23, 26452654.Google Scholar
Zucker, C.L. (1998). Localization of gephyrin and glycine receptor subunit immunoreactivity in the rabbit retina. Visual Neuroscience 15, 389395.Google Scholar