Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T11:57:03.199Z Has data issue: false hasContentIssue false

Early suppression effect in human primary visual cortex during Kanizsa illusion processing: A magnetoencephalographic evidence

Published online by Cambridge University Press:  18 March 2016

BORIS V. CHERNYSHEV*
Affiliation:
Laboratory of Cognitive Psychophysiology, National Research University Higher School of Economics, Moscow, Russia Department of Psychophysiology, School of Psychology, National Research University Higher School of Economics, Moscow, Russia Department of Higher Nervous Activity, Lomonosov Moscow State University, Moscow, Russia
PLATON K. PRONKO
Affiliation:
Laboratory of Cognitive Psychophysiology, National Research University Higher School of Economics, Moscow, Russia
TATIANA A. STROGANOVA
Affiliation:
MEG Center, Moscow State University of Psychology and Education, Moscow, Russia
*
*Address correspondence to: Boris V. Chernyshev, Ph.D, National Research University Higher School of Economics, Myasnitskaya str. 20, Moscow, 101000, Russia, Phone: +7 916 7163993. E-mail: bchernyshev@hse.ru; Additional E-mail: b_chernysh@mail.ru

Abstract

Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40–120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect—a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, D.M. & Wright, J.J. (2006). The maximum range and timing of excitatory contextual modulation in monkey primary visual cortex. Visual Neuroscience 23, 721728.Google Scholar
Altschuler, T.S., Molholm, S., Russo, N.N., Snyder, A.C., Brandwein, A.B., Blanco, D. & Foxe, J.J. (2012). Early electrophysiological indices of illusory contour processing within the lateral occipital complex are virtually impervious to manipulations of illusion strength. NeuroImage 59, 40744085.CrossRefGoogle ScholarPubMed
Angelucci, A. & Bressloff, P.C. (2006). Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1. In Visual Perception, Part 1, Fundamentals of Vision: Low and Mid-Level Processes in Perception, Vol. 154, ed. MartinezConde, S., Macknik, S.L., Martinez, L.M., Alonso, J.M. & Tse, P.U., pp. 93120. Amsterdam: Elsevier Science Bv.Google Scholar
Angelucci, A. & Bullier, J. (2003). Reaching beyond the classical receptive field of VI neurons: Horizontal or feedback axons? Journal of Physiology 97, 141154.Google Scholar
Bair, W., Cavanaugh, J.R. & Movshon, J.A. (2003). Time course and time-distance relationships for surround suppression in macaque V1 neurons. Journal of Neuroscience 23, 76907701.CrossRefGoogle ScholarPubMed
Brighina, F., Ricci, R., Piazza, A., Scalia, S., Giglia, G. & Fierro, B. (2003). Illusory contours and specific regions of human extrastriate cortex: Evidence from rTMS. European Journal of Neuroscience 17, 24692474.CrossRefGoogle ScholarPubMed
Brodeur, M., Lepore, F., Lepage, M., Bacon, B.A., Jemel, B. & Debruille, J.B. (2008). Alternative mode of presentation of Kanizsa figures sheds new light on the chronometry of the mechanisms underlying the perception of illusory figures. Neuropsychologia 46, 554566.CrossRefGoogle ScholarPubMed
Chen, C.C., Kasamatsu, T., Polat, U. & Norcia, A.M. (2001). Contrast response characteristics of long-range lateral interactions in cat striate cortex. Neuroreport 12, 655661.CrossRefGoogle ScholarPubMed
Cicmil, N., Bridge, H., Parker, A.J., Woolrich, M.W. & Krug, K. (2014). Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches. Frontiers in Neuroscience 8, 127.Google Scholar
Dale, A.M., Fischl, B. & Sereno, M.I. (1999). Cortical surface-based analysis—I. Segmentation and surface reconstruction. NeuroImage 9, 179194.CrossRefGoogle ScholarPubMed
Daniel, P.M. & Whitteridge, D. (1961). Representation of visual field on cerebral cortex in monkeys. Journal of Physiology 159, 203221.Google Scholar
de-Wit, L.H., Kubilius, J., Wagemans, J. & Op de Beeck, H.P. (2012). Bistable Gestalts reduce activity in the whole of V1, not just the retinotopically predicted parts. Journal of Vision 12, 114.CrossRefGoogle Scholar
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S. & Killiany, R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968980.CrossRefGoogle ScholarPubMed
Dougherty, R.F., Koch, V.M., Brewer, A.A., Fischer, B., Modersitzki, J. & Wandell, B.A. (2003). Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of Vision 3, 586598.Google Scholar
Fang, F., Kersten, D. & Murray, S.O. (2008). Perceptual grouping and inverse fMRI activity patterns in human visual cortex. Journal of Vision 8, 2.19.CrossRefGoogle ScholarPubMed
Ffytche, D.H. & Zeki, S. (1996). Brain activity related to the perception of illusory contours. NeuroImage 3, 104108.CrossRefGoogle Scholar
Fischl, B., Sereno, M.I. & Dale, A.M. (1999). Cortical surface-based analysis—II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195207.CrossRefGoogle Scholar
Gheorghiu, E., Kingdom, F.A.A. & Petkov, N. (2014). Contextual modulation as de-texturizer. Vision Research 104, 1223.CrossRefGoogle ScholarPubMed
Goebel, R., Khorram-Sefat, D., Muckli, L., Hacker, H. & Singer, W. (1998). The constructive nature of vision: Direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. European Journal of Neuroscience 10, 15631573.CrossRefGoogle ScholarPubMed
Grosof, D.H., Shapley, R.M. & Hawken, M.J. (1993). Macaque V1 neurons can signal illusory contours. Nature 365, 550552.Google Scholar
Halgren, E., Mendola, J., Chong, C.D.R. & Dale, A.M. (2003). Cortical activation to illusory shapes as measured with magnetoencephalography. NeuroImage 18, 10011009.CrossRefGoogle ScholarPubMed
Hallum, L.E. & Movshon, J.A. (2014). Surround suppression supports second-order feature encoding by macaque V1 and V2 neurons. Vision Research 104, 2435.CrossRefGoogle ScholarPubMed
Hämäläinen, M.S. & Sarvas, J. (1989). Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Transactions on Biomedical Engineering 36, 165171.CrossRefGoogle ScholarPubMed
Hashemi-Nezhad, M. & Lyon, D.C. (2012). Orientation tuning of the suppressive extraclassical surround depends on intrinsic organization of V1. Cerebral Cortex 22, 308326.Google Scholar
Hasnain, M.K., Fox, P.T. & Woldorff, M.G. (1998). Intersubject variability of functional areas in the human visual cortex. Human Brain Mapping 6, 301315.Google Scholar
Henry, C.A., Joshi, S., Xing, D.J., Shapley, R.M. & Hawken, M.J. (2013). Functional characterization of the extraclassical receptive field in macaque V1: Contrast, orientation, and temporal dynamics. Journal of Neuroscience 33, 62306242.Google Scholar
Herrmann, C.S. & Mecklinger, A. (2000). Magnetoencephalographic responses to illusory figures: Early evoked gamma is affected by processing of stimulus features. International Journal of Psychophysiology 38, 265281.Google Scholar
Hess, R.F., Hayes, A. & Field, D.J. (2003). Contour integration and cortical processing. Journal of Physiology 97, 105119.Google ScholarPubMed
Hillebrand, A. & Barnes, G.R. (2002). A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage 16, 638650.CrossRefGoogle ScholarPubMed
Hirsch, J., Delapaz, R.L., Relkin, N.R., Victor, J., Kim, K., Li, T., Borden, P., Rubin, N. & Shapley, R. (1995). Illusory contours activate specific regions in human visual-cortex—Evidence from functional magnetic-resonance-imaging. Proceedings of the National Academy of Sciences of the United States of America 92, 64696473.CrossRefGoogle ScholarPubMed
Ishikawa, A., Shimegi, S., Kida, H. & Sato, H. (2010). Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat. European Journal of Neuroscience 31, 20862100.Google Scholar
Jones, H.E., Grieve, K.L., Wang, W. & Sillito, A.M. (2001). Surround suppression in primate V1. Journal of Neurophysiology 86, 20112028.CrossRefGoogle ScholarPubMed
Jones, H.E., Wang, W. & Sillito, A.M. (2002). Spatial organization and magnitude of orientation contrast interactions in primate V1. Journal of Neurophysiology 88, 27962808.CrossRefGoogle ScholarPubMed
Kanizsa, G. (1955). Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di Psicologia 49, 730.Google Scholar
Kapadia, M.K., Ito, M., Gilbert, C.D. & Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context—Parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843856.Google Scholar
Khoe, W., Freeman, E., Woldorff, M.G. & Mangun, G.R. (2004). Electrophysiological correlates of lateral interactions in human visual cortex. Vision Research 44, 16591673.Google Scholar
Kinoshita, M., Gilbert, C.D. & Das, A. (2009). Optical imaging of contextual interactions in V1 of the behaving monkey. Journal of Neurophysiology 102, 19301944.CrossRefGoogle ScholarPubMed
Knebel, J.F. & Murray, M.M. (2012). Towards a resolution of conflicting models of illusory contour processing in humans. NeuroImage 59, 28082817.Google Scholar
Knierim, J.J. & Vanessen, D.C. (1992). Neuronal responses to static texture patterns in area-V1 of the alert macaque monkey. Journal of Neurophysiology 67, 961980.Google Scholar
Larsson, J., Amunts, K., Gulyas, B., Malikovic, A., Zilles, K. & Roland, P.E. (1999). Neuronal correlates of real and illusory contour perception: Functional anatomy with PET. European Journal of Neuroscience 11, 40244036.Google Scholar
Lee, T.S. & Nguyen, M. (2001). Dynamics of subjective contour formation in the early visual cortex. Proceedings of the National Academy of Sciences of the United States of America 98, 19071911.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Wang, Y.C., Schmolesky, M.T. & Zhou, Y.F. (1998). Neural correlates of boundary perception. Visual Neuroscience 15, 11071118.CrossRefGoogle ScholarPubMed
Liu, Y.J., Hashemi-Nezhad, M. & Lyon, D.C. (2013). Sharper orientation tuning of the extraclassical suppressive-surround due to a neuron’s location in the V1 orientation map emerges late in time. Neuroscience 229, 100117.CrossRefGoogle ScholarPubMed
Maertens, M., Pollmann, S., Hanke, M., Mildner, T. & Moller, H. (2008). Retinotopic activation in response to subjective contours in primary visual cortex. Frontiers in Human Neuroscience 2, 2.Google Scholar
Mendola, J.D., Dale, A.M., Fischl, B., Liu, A.K. & Tootell, R.B.H. (1999). The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. Journal of Neuroscience 19, 85608572.Google Scholar
Mensen, A. & Khatami, R. (2013). Advanced EEG analysis using threshold-free cluster-enhancement and non-parametric statistics. NeuroImage 67, 111118.CrossRefGoogle ScholarPubMed
Mijovic, B., De Vos, M., Vanderperren, K., Machilsen, B., Sunaert, S., Van Huffel, S. & Wagemans, J. (2014). The dynamics of contour integration: A simultaneous EEG-fMRI study. NeuroImage 88, 1021.CrossRefGoogle ScholarPubMed
Mizobe, K., Polat, U., Pettet, M.W. & Kasamatsu, T. (2001). Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field. Visual Neuroscience 18, 377391.CrossRefGoogle ScholarPubMed
Mottron, L., Dawson, M., Soulieres, I., Hubert, B. & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders 36, 2743.CrossRefGoogle ScholarPubMed
Murray, M.M. & Herrmann, C.S. (2013). Illusory contours: A window onto the neurophysiology of constructing perception. Trends in Cognitive Sciences 17, 471481.CrossRefGoogle ScholarPubMed
Murray, M.M., Wylie, G.R., Higgins, B.A., Javitt, D.C., Schroeder, C.E. & Foxe, J.J. (2002a). The spatiotemporal dynamics of illusory contour processing: Combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. Journal of Neuroscience 22, 50555073.CrossRefGoogle ScholarPubMed
Murray, S.O., Kersten, D., Olshausen, B.A., Schrater, P. & Woods, D.L. (2002b). Shape perception reduces activity in human primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America 99, 1516415169.Google Scholar
Muthukumaraswamy, S.D. & Singh, K.D. (2013). Visual gamma oscillations: The effects of stimulus type, visual field coverage and stimulus motion on MEG and EEG recordings. NeuroImage 69, 223230.Google Scholar
Nassi, J.J., Lomber, S.G. & Born, R.T. (2013). Corticocortical feedback contributes to surround suppression in V1 of the alert primate. Journal of Neuroscience 33, 85048517.Google Scholar
Nichols, T.E. & Holmes, A.P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping 15, 125.CrossRefGoogle ScholarPubMed
Nurminen, L. & Angelucci, A. (2014). Multiple components of surround modulation in primary visual cortex: Multiple neural circuits with multiple functions? Vision Research 104, 4756.Google Scholar
Ohtani, Y., Okamura, S., Shibasaki, T., Arakawa, A., Yoshida, Y., Toyama, K. & Ejima, Y. (2002). Magnetic responses of human visual cortex to illusory contours. Neuroscience Letters 321, 173176.Google Scholar
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97113.CrossRefGoogle ScholarPubMed
Orekhova, E.V., Butorina, A.V., Sysoeva, O.V., Prokofyev, A.O., Nikolaeva, A.Y. & Stroganova, T.A. (2015). Frequency of gamma oscillations in humans is modulated by velocity of visual motion. Journal of Neurophysiology 114, 244255.Google Scholar
Peterhans, E. & Von der Heydt, R. (1989). Mechanisms of contour perception in monkey visual-cortex. 2. Contours bridging gaps. Journal of Neuroscience 9, 17491763.CrossRefGoogle ScholarPubMed
Polat, U., Mizobe, K., Pettet, M.W., Kasamatsu, T. & Norcia, A.M. (1998). Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature 391, 580584.CrossRefGoogle ScholarPubMed
Polat, U. & Norcia, A.M. (1996). Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex. Vision Research 36, 20992109.Google Scholar
Proverbio, A.M. & Zani, A. (2002). Electrophysiological indexes of illusory contours perception in humans. Neuropsychologia 40, 479491.Google Scholar
Ramachandran, V.S., Ruskin, D., Cobb, S., Rogersramachandran, D. & Tyler, C.W. (1994). On the perception of illusory contours. Vision Research 34, 31453152.Google Scholar
Ramsden, B.M., Hung, C.P. & Roe, A.W. (2001). Real and illusory contour processing in area V1 of the primate: A cortical balancing act. Cerebral Cortex 11, 648665.CrossRefGoogle ScholarPubMed
Redies, C., Crook, J.M. & Creutzfeldt, O.D. (1986). Neuronal responses to borders with and without luminance gradients in cat visual-cortex and dorsal lateral geniculate-nucleus. Experimental Brain Research 61, 469481.Google Scholar
Sasaki, Y. & Watanabe, T. (2004). The primary visual cortex fills in color. Proceedings of the National Academy of Sciences of the United States of America 101, 1825118256.Google Scholar
Schwabe, L., Obermayer, K., Angelucci, A. & Bressloff, P.C. (2006). The role of feedback in shaping the extra-classical receptive field of cortical neurons: A recurrent network model. Journal of Neuroscience 26, 91179129.CrossRefGoogle ScholarPubMed
Seghier, M., Dojat, M., Delon-Martin, C., Rubin, C., Warnking, J., Segebarth, C. & Bullier, J. (2000). Moving illusory contours activate primary visual cortex: An fMRI study. Cerebral Cortex 10, 663670.CrossRefGoogle ScholarPubMed
Series, P., Lorenceau, J. & Fregnac, Y. (2003). The “silent” surround of V1 receptive fields: Theory and experiments. Journal of Physiology 97, 453474.Google Scholar
Sheth, B.R., Sharma, J., Rao, S.C. & Sur, M. (1996). Orientation maps of subjective contours in visual cortex. Science 274, 21102115.CrossRefGoogle ScholarPubMed
Shipley, T.F. & Kellman, P.J. (1992). Strength of visual interpolation depends on the ratio of physically specified to total edge length. Perception and Psychophysics 52, 97106.CrossRefGoogle ScholarPubMed
Shpaner, M., Molholm, S., Forde, E. & Foxe, J.J. (2013). Disambiguating the roles of area V1 and the lateral occipital complex (LOC) in contour integration. NeuroImage 69, 146156.Google Scholar
Shpaner, M., Murray, M.M. & Foxe, J.J. (2009). Early processing in the human lateral occipital complex is highly responsive to illusory contours but not to salient regions. European Journal of Neuroscience 30, 20182028.Google Scholar
Sillito, A.M. & Jones, H.E. (1996). Context-dependent interactions and visual processing in V1. Journal of Physiology 90, 205209.Google Scholar
Stroganova, T.A., Orekhova, E.V., Prokofyev, A.O., Posikera, I.N., Morozov, A.A., Obukhov, Y.V. & Morozov, V.A. (2007). Inverted event-related potentials response to illusory contour in boys with autism. Neuroreport 18, 931935.CrossRefGoogle ScholarPubMed
Stroganova, T.A., Orekhova, E.V., Prokofyev, A.O., Tsetlin, M.M., Gratchev, V.V., Morozov, A.A. & Obukhov, Y.V. (2012). High-frequency oscillatory response to illusory contour in typically developing boys and boys with autism spectrum disorders. Cortex 48, 701717.Google Scholar
Sugita, Y. (1999). Grouping of image fragments in primary visual cortex. Nature 401, 269272.CrossRefGoogle ScholarPubMed
Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D. & Leahy, R.M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience 13, 879716.Google Scholar
Tanaka, T. & Nakamura, K. (2013). Information maximization principle explains the emergence of complex cell-like neurons. Frontiers in Computational Neuroscience 7, 165.CrossRefGoogle ScholarPubMed
Vanni, M.P. & Casanova, C. (2013). Surround suppression maps in the cat primary visual cortex. Frontiers in Neural Circuits 7, 78.Google Scholar
Virsu, V. & Rovamo, J. (1979). Visual resolution, contrast sensitivity, and the cortical magnification factor. Experimental Brain Research 37, 475494.CrossRefGoogle ScholarPubMed
Von der Heydt, R. & Peterhans, E. (1989). Mechanisms of contour perception in monkey visual-cortex. 1. Lines of pattern discontinuity. Journal of Neuroscience 9, 17311748.Google Scholar
Von der Heydt, R., Peterhans, E. & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science 224, 12601262.Google Scholar
Wandell, B.A., Brewer, A.A. & Dougherty, R.F. (2005). Visual field map clusters in human cortex. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 693707.Google Scholar
Wilson, H.R., Levi, D., Maffei, L., Rovamo, J. & DeValois, R. (1990). The perception of form: Retina to striate cortex. In Visual Perception: The Neurophysiological Foundations, ed. Spillmann, L. & Werner, J.B., pp. 231372. New York: Academic Press.CrossRefGoogle Scholar
Yuval-Greenberg, S., Tomer, O., Keren, A.S., Nelken, I. & Deouell, L.Y. (2008). Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron 58, 429441.CrossRefGoogle ScholarPubMed
Zhou, Y.F., Jia, F., Tao, H.Y. & Shou, T.D. (2001). The responses to illusory contours of neurons in cortex areas 17 and 18 of the cats. Science in China Series C: Life Sciences 44, 136145.Google Scholar
Zhu, M.C. & Rozell, C.J. (2013). Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system. PLoS Computational Biology 9, e1003191.Google Scholar