Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T13:36:59.877Z Has data issue: false hasContentIssue false

Fine structure of receptive-field centers of X and Y cells of the cat

Published online by Cambridge University Press:  02 June 2009

R. E. Soodak
Affiliation:
The RockefellerUniversity, New York
R. M. Shapley
Affiliation:
Center for Neural Science, New York University, New York
E. Kaplan
Affiliation:
The RockefellerUniversity, New York

Abstract

We investigated the fine structure of receptive field centers of X and Y cells of the retina and lateral geniculate nucleus of the cat using sinusoidal grating stimuli of high spatial frequency. By measuring orientation tuning and spatial-frequency tuning at multiple orientations, the two-dimensional sensitivity distribution was examined. We found that receptive-field centers typically have multiple sensitivity peaks that can be modeled as several spatially offset subunits. A subunit structure was found in both X and Y cells, with an average number of subunits per receptive-field center of approximately 2.9 in X cells and approximately 4.6 in Y cells. In X cells these subunits may correspond to individual cone bipolar inputs. In Y cells, the subunits may reflect the structure of the dendritic tree. The observation of the subunit structure of the receptive-field center, in conjunction with manipulation of the retinal wiring through pharmacological intervention, may provide a new tool for probing the circuitry of the retina.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bishop, P.O., Burke, W. & Davis, R. (1958). Synapse discharge by single fiber in mammalian visual system. Nature 182, 228230.CrossRefGoogle ScholarPubMed
Bishop, P.O., Burke, W. & Davis, R. (1962). The interpretation of the extracellular response of single lateral geniculate cells. Journal of Physiology 162, 451472.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat's retina. Journal of Physiology 240, 397419.CrossRefGoogle ScholarPubMed
Cleland, B.G., Dubin, M.W. & Levick, W.R. (1971). Sustained and transient neurons in the cat's retina and lateral geniculate nucleus. Journal of Physiology 217, 473496.CrossRefGoogle ScholarPubMed
Dawis, S., Shapley, R., Kaplan, E. & Tranchina, D. (1984). The receptive-field organization of X cells in the cat: spatiotemporal coupling and asymmetry. Vision Research 24, 549564.CrossRefGoogle ScholarPubMed
Derrington, A.M. & Lennie, P. (1982). The influence of temporal frequency and adaptation level on receptive-field organization of retinal ganglion cells in cat. Journal of Physiology 333, 343366.CrossRefGoogle ScholarPubMed
Enroth-Cugell, C., Hertz, B.G. & Lennie, P. (1977). Cone signals in the cat's retina. Journal of Physiology 269, 273296.CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187, 517552.CrossRefGoogle ScholarPubMed
Enroth-Cugell, C., Robson, J.G., Schweitzer-Tong, D.E. & Watson, A.B. (1983). Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. Journal of Physiology 341, 279307.CrossRefGoogle ScholarPubMed
Freed, M.A. & Sterling, P. (1985). Circuitry of cone bipolar input to ON-center alpha and beta ganglion cells. Investigative Ophthalmology and Visual Science (Suppl) 26, 194.Google Scholar
Freygang, W.H. (1958). An analysis of extracellular potentials from single neurons in lateral geniculate nucleus of the cat. Journal of General Physiology 41, 543564.CrossRefGoogle ScholarPubMed
Hammond, P. (1974). Cat retinal ganglion cells: size and shape of receptive-field centres. Journal of Physiology 242, 99118.CrossRefGoogle ScholarPubMed
Hochstein, S. & Shapley, R.M. (1976 a). Quantitative analysis of retinal ganglion cell classifications. Journal of Physiology 262, 237264.CrossRefGoogle ScholarPubMed
Hochstein, S. & Shapley, R.M. (1976 b). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. Journal of Physiology 262, 265284.CrossRefGoogle ScholarPubMed
Kaplan, E. & Shapley, R.M. (1984). The origin of the S (slow) potential in the mammalian lateral geniculate nucleus. Experimental Brain Research 55, 111116.CrossRefGoogle Scholar
Kolb, H. (1979). The inner plexiform layer in the retina of the cat: electron-microscopic observations. Journal of Neurocytology 8, 295329.CrossRefGoogle ScholarPubMed
Levick, W.R., Cleland, B.G. & Dubin, M.W. (1972). LGN neurons of the cat: retinal inputs and physiology. Investigative Ophthalmology 11, 302311.Google Scholar
Levick, W.R. & Thibos, L.N. (1980). Orientation bias of cat retinal ganglion cells. Nature 286, 389390.CrossRefGoogle ScholarPubMed
Levick, W.R. & Thibos, L.N. (1982). Analysis of orientation bias in cat retina. Journal of Physiology 329, 243261.CrossRefGoogle ScholarPubMed
Linsenmeier, R.A., Frishman, L.J., Jakiela, H.G. & EnrothCugell, C. (1982). Receptive-field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements. Vision Research 22, 11731183.CrossRefGoogle ScholarPubMed
McGuire, B.A., Stevens, J.K. & Sterling, P. (1986). Circuitry of beta ganglion cells in cat retina. Journal of Neuroscience 6, 907918.CrossRefGoogle Scholar
McIlwain, J.T. & Creutzfeldt, O.D. (1967). Microelectrode study of synaptic excitation and inhibition in the lateral geniculate nucleus of the cat. Journal of Neurophysiology 30,121.CrossRefGoogle Scholar
Milkman, N., Schick, G., Rossetto, M., Ratlife, F., Shapley, R. & Victor, J. (1980). A two-dimensional computer-controlled visual stimulator. Behavioral Research Methods and Instrumentation 12, 283292.CrossRefGoogle Scholar
Rodieck, R.W. (1965). Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 5, 583601.CrossRefGoogle ScholarPubMed
Saito, H. (1983). Pharmacological and morphological differences between X- and Y-type ganglion cells in the cat's retina. Vision Research 23, 12991308.CrossRefGoogle ScholarPubMed
Shou, T. & Leventhal, A.G. (1989). Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus. Journal of Neuroscience 9, 42874302.CrossRefGoogle ScholarPubMed
So, Y.T. & Shapley, R.M. (1981). Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and pengeniculate interneurons. Journal of Neurophysiology 45, 107120.CrossRefGoogle Scholar
Soodak, R.E. (1986). Two-dimensional modeling of visual receptive fields using Gaussian subunits. Proceedings of the National Academy of Sciences of the U.S.A. 83, 92599263.CrossRefGoogle ScholarPubMed
Soodak, R.E. (1987). The retinal ganglion cell mosaic defines orientation columns in striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 84, 39363940.CrossRefGoogle ScholarPubMed
Soodak, R.E., Shapley, R.M. & Kaplan, E. (1987). Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. Journal of Neurophysiology 58, 267275.CrossRefGoogle ScholarPubMed
Steinberg, R.H., Reid, M. & Lacy, P.L. (1973). The distribution of rods and cones in the retina of the cat (Felis domesticus). Journal of Comparative Neurology 148, 229248.CrossRefGoogle ScholarPubMed
Sterling, P., Freed, M. & Smith, R.G. (1986). Circuitry and functional architecture of the cat retina. Trends in Neuroscience 9, 186192.CrossRefGoogle Scholar
Thibos, L.N. & Levick, W.R. (1983), Bimodal receptive fields of cat retinal ganglion cells. Vision Research 23, 15611572.CrossRefGoogle ScholarPubMed
Victor, J.V. & Shapley, R.M. (1979). The nonlinear pathway of Y ganglion cells in the cat retina. Journal of General Physiology 74, 671689.CrossRefGoogle ScholarPubMed
Vidyasagar, T.R. & Heide, W. (1984). Geniculate orientation biases seen with moving sine-wave gratings: implications for a model of simple cell afferent connectivity. Experimental Brain Research 57, 196200.CrossRefGoogle Scholar
Wässle, H., Boycott, B.B. & Illing, R.-B. (1981). Morphology and mosaic of ON- and OFF-beta cells in the cat retina and some functional considerations. Proceedings of the Royal Society B (London) 212, 177195.Google Scholar
Wässle, H., Levick, W.R. & Cleland, B.G. (1975). The distribution of the alpha type of ganglion cells in the cat's retina. Journal of Comparative Neurology 159, 419438.CrossRefGoogle ScholarPubMed