Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T10:21:09.618Z Has data issue: false hasContentIssue false

Inferences about infants’ visual brain mechanisms

Published online by Cambridge University Press:  13 November 2013

JANETTE ATKINSON
Affiliation:
Department of Developmental Science, University College London, London, UK
OLIVER BRADDICK*
Affiliation:
Department of Experimental Psychology, University of Oxford, Oxford, UK
*
*Address correspondence to: Prof. Oliver Braddick, Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK. E-mail: oliver.braddick@psy.ox.ac.uk

Abstract

We discuss hypotheses that link the measurements we can make with infants to inferences about their developing neural mechanisms. First, we examine evidence from the sensitivity to visual stimulus properties seen in infants’ responses, using both electrophysiological measures (transient and steady-state recordings of visual evoked potentials/visual event-related potentials) and behavioral measures and compare this with the sensitivity of brain processes, known from data on mammalian neurophysiology and human neuroimaging. The evidence for multiple behavioral systems with different patterns of visual sensitivity is discussed. Second, we consider the analogies which can be made between infants’ behavior and that of adults with identified brain damage, and extend these links to hypothesize about the brain basis of visual deficits in infants and children with developmental disorders. Last, we consider how these lines of data might allow us to form “inverse linking hypotheses” about infants’ visual experience.

Type
Retrospective and prospective analyses of linking propositions
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ales, J.M., Yates, J.L. & Norcia, A.M. (2013). On determining the intracranial sources of visual evoked potentials from scalp topography: A reply to Kelly et al. Neuroimage 64, 703711.CrossRefGoogle ScholarPubMed
Atkinson, J. (1979). Development of optokinetic nystagmus in the human infant and monkey infant: An analogue to development in kittens. In Developmental Neurobiology of Vision, ed. Freeman, R.D., NATO Advanced Study Institute Series. New York: Plenum Press.Google Scholar
Atkinson, J. (1984). Human visual development over the first 6 months of life. A review and a hypothesis. Human Neurobiology 3, 6174.Google ScholarPubMed
Atkinson, J. (2000). The Developing Visual Brain. Oxford: Oxford University Press.Google Scholar
Atkinson, J. & Braddick, O. (1998). Research methods in infant vision. In Vision Research: A Practical Approach, ed. Robson, J.G. & Carpenter, R.H.S.Oxford: Oxford University Press.Google Scholar
Atkinson, J. & Braddick, O. (2007). Visual and visuocognitive development in children born very prematurely. Progress in Brain Research 164, 123149.CrossRefGoogle ScholarPubMed
Atkinson, J. & Braddick, O. (2011 a). From genes to brain development to phenotypic behavior: “Dorsal-stream vulnerability” in relation to spatial cognition, attention, and planning of actions in Williams syndrome (WS) and other developmental disorders. Progress in Brain Research 189, 261283.Google ScholarPubMed
Atkinson, J. & Braddick, O. (2011 b). Linked brain development for vision, visual attention and visual cognition in typical development and developmental disorders. In Brain Lesion Localization and Developmental Function: Frontal Lobes, Limbic System, Visuo-cognitive System Mariani Foundation Paediatric Neurology Series 26, ed. Riva, D.Montrouge, France: John Libbey Eurotext Ltd.Google Scholar
Atkinson, J. & Braddick, O. (2012). Visual attention in the first years: Typical development and developmental disorders. Developmental Medicine and Child Neurology 54, 589595.CrossRefGoogle ScholarPubMed
Atkinson, J. & Braddick, O.J. (1981). Development of optokinetic nystagmus in infants: An indicator of cortical binocularity? In Eye Movements: Cognition and Visual Perception, ed. Fisher, D.F., Monty, R.A. & Senders, J.W., pp. 5364. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Atkinson, J. & Braddick, O.J. (1990). The developmental course of cortical processing streams in the human infant. In Vision: Coding and Efficiency, ed. Blakemore, C.B.Cambridge, UK: Cambridge University Press.Google Scholar
Atkinson, J., Braddick, O., Anker, S., Curran, W., Andrew, R., Wattam-Bell, J. & Braddick, F. (2003). Neurobiological models of visuospatial cognition in children with Williams syndrome: Measures of dorsal-stream and frontal function. Developmental Neuropsychology 23, 139172.CrossRefGoogle ScholarPubMed
Atkinson, J., Braddick, O., Anker, S., Nardini, M., Birtles, D., Rutherford, M., Mercuri, E., Dyet, L., Edwards, D. & Cowan, F. (2008). Cortical vision, MRI and developmental outcome in preterm infants. Archives of Disease in Childhood 93, F292F297.CrossRefGoogle ScholarPubMed
Atkinson, J., Braddick, O.J. & Braddick, F. (1974). Acuity and contrast sensitivity of infant vision. Nature 247, 403404.CrossRefGoogle Scholar
Atkinson, J., Braddick, O.J. & French, J. (1979). Contrast sensitivity of the human neonate measured by the visual evoked potential. Investigative Ophthalmology & Visual Science 18, 210213.Google ScholarPubMed
Atkinson, J., Braddick, O.J. & Moar, K. (1977). Development of contrast sensitivity over the first three months of life in the human infant. Vision Research 17, 10371044.CrossRefGoogle Scholar
Atkinson, J., Braddick, O., Rose, F.E., Searcy, Y.M., Wattam-Bell, J. & Bellugi, U. (2006). Dorsal-stream motion processing deficits persist into adulthood in Williams syndrome. Neuropsychologia 44, 828833.CrossRefGoogle ScholarPubMed
Atkinson, J. & French, J. (1983). Reaching for rattles: A preliminary study of contrast sensitivity in 7-10 month old infants. Perception 12, 323329.CrossRefGoogle ScholarPubMed
Atkinson, J. & Hood, B. (1997). Development of visual attention. In Attention, Development, and Psychopathology, ed. Burack, J.A. & Enns, J.T., pp. 3154. New York: Guildford Press.Google Scholar
Atkinson, J., Hood, B., Wattam-Bell, J., Anker, S. & Tricklebank, J. (1988). Development of orientation discrimination in infancy. Perception 17, 587595.CrossRefGoogle ScholarPubMed
Atkinson, J., Hood, B., Wattam-Bell, J., & Braddick, O.J. (1992). Changes in infants’ ability to switch visual attention in the first three months of life. Perception 21, 643653.CrossRefGoogle ScholarPubMed
Atkinson, J., King, J., Braddick, O., Nokes, L., Anker, S. & Braddick, F. (1997). A specific deficit of dorsal stream function in Williams’ syndrome. Neuroreport 8, 19191922.CrossRefGoogle ScholarPubMed
Barbu-Roth, M., Anderson, D.I., Desprès, A., Provasi, J., Cabrol, D. & Campos, J.J. (2009). Neonatal stepping in relation to terrestrial optic flow. Child Development 80, 814.CrossRefGoogle ScholarPubMed
Binsted, G., Brownell, K., Vorontsova, Z., Heath, M. & Saucier, D. (2007). Visuomotor system uses target features unavailable to conscious awareness. Proceedings of the National Academy of Sciences of the United States of America 104, 1266912672.Google ScholarPubMed
Birch, E.E., Fawcett, S. & Stager, D. (2000). Co-development of VEP motion response and binocular vision in normal infants and infantile esotropes. Investigative Ophthalmology & Visual Science 41, 17191723.Google ScholarPubMed
Born, A.P., Miranda, M.J., Rostrup, E., Toft, P.B., Peitersen, B., Larsson, H.B.W. & Lou, H.C. (2000). Functional magnetic resonance imaging of the normal and abnormal visual system in early life. Neuropediatrics 31, 2432.CrossRefGoogle ScholarPubMed
Born, P., Leth, H., Miranda, M.J., Rostrup, E., Stensgaard, A., Peitersen, B., Larsson, H.B.W. & Lou, H.C. (1998). Visual activation in infants and young children studied by functional magnetic resonance imaging. Pediatric Research 44, 578583.CrossRefGoogle ScholarPubMed
Braddick, O. (1996). Binocularity in infancy. Eye 10, 182188.CrossRefGoogle ScholarPubMed
Braddick, O. & Atkinson, J. (2007). Development of brain mechanisms for visual global processing and object segmentation. Progress in Brain Research 164, 151168.CrossRefGoogle ScholarPubMed
Braddick, O. & Atkinson, J. (2009). Infants’ sensitivity to motion and temporal change. Optometry and Vision Science 86, 577582.Google ScholarPubMed
Braddick, O. & Atkinson, J. (2011). Development of human visual function. Vision Research 51, 15881609.CrossRefGoogle ScholarPubMed
Braddick, O. & Atkinson, J. (2013). Visual control of manual actions: Brain mechanisms in typical development and developmental disorders. Developmental Medicine and Child Neurology. doi: 10.1111/dmcn.12300.CrossRefGoogle ScholarPubMed
Braddick, O., Atkinson, J., Hood, B., Harkness, W., Jackson, G. & Vargha-Khadem, F. (1992). Possible blindsight in infants lacking one cerebral hemisphere. Nature 360, 461463.CrossRefGoogle ScholarPubMed
Braddick, O., Atkinson, J. & Hood, B. (1996). Monocular vs binocular control of infants’ reaching. Investigative Ophthalmology & Visual Science 37, S290.Google Scholar
Braddick, O., Atkinson, J. & Wattam-Bell, J. (2003). Normal and anomalous development of visual motion processing: Motion coherence and ‘dorsal-stream vulnerability’. Neuropsychologia 41, 17691784.CrossRefGoogle ScholarPubMed
Braddick, O.J. (1993). Orientation- and motion-selective mechanisms in infants. In Early Visual Development, Normal and Abnormal, ed. Simons, K., pp. 163177. New York: Oxford University Press.Google Scholar
Braddick, O.J., Atkinson, J., Julesz, B., Kropfl, W., Bodis-Wollner, I. & Raab, E. (1980). Cortical binocularity in infants. Nature 288, 363365.CrossRefGoogle ScholarPubMed
Braddick, O.J., Birtles, D., Wattam-Bell, J. & Atkinson, J. (2005). Motion- and orientation-specific cortical responses in infancy. Vision Research 45, 31693179.CrossRefGoogle ScholarPubMed
Braddick, O.J., O’Brien, J.M.D., Wattam-Bell, J., Atkinson, J. & Turner, R. (2000). Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Current Biology: CB 10, 731734.CrossRefGoogle Scholar
Braddick, O.J., Wattam-Bell, J. & Atkinson, J. (1986). Orientation-specific cortical responses develop in early infancy. Nature 320, 617619.CrossRefGoogle ScholarPubMed
Braddick, O.J., Wattam-Bell, J., Day, J. & Atkinson, J. (1983). The onset of binocular function in human infants. Human Neurobiology 2, 6569.Google ScholarPubMed
Brecelj, J. (2003). From immature to mature pattern ERG and VEP. Documenta Ophthalmologica 107, 215224.CrossRefGoogle ScholarPubMed
Breckenridge, K., Braddick, O. & Atkinson, J. (2013). The organisation of attention in typical development: A new preschool attention test battery. British Journal of Developmental Psychology 31, 271288.CrossRefGoogle ScholarPubMed
Brindley, G.S. (1970). Physiology of the Retina and Visual Pathway (2nd ed.). London: Edward Arnold.Google Scholar
Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. (1993). Responses of neurons in macaque MT to stochastic motion signals. Visual Neuroscience 10, 11571169.CrossRefGoogle ScholarPubMed
Brosseau-Lachaine, O., Casanova, C. & Faubert, J. (2008). Infant sensitivity to radial optic flow fields during the first months of life. Journal of Vision 8, 5.15.14.CrossRefGoogle ScholarPubMed
Calvert, G.A., Hansen, P.C., Iversen, S.D. & Brammer, M.J. (2001). Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. Neuroimage 14, 427438.CrossRefGoogle Scholar
Campbell, F.W. & Kulikowski, J.J. (1972). The visual evoked potential as a function of contrast of a grating pattern. Journal of Physiology 222, 345356.CrossRefGoogle ScholarPubMed
Castiello, U., Paulignan, Y. & Jeannerod, M. (1991). Temporal dissociation of motor responses and subjective awareness. A study in normal subjects. Brain 114, 26392655.CrossRefGoogle ScholarPubMed
Dayton, G.O. Jr., Jones, M.H., Aiu, P., Rawson, R.A., Steele, B. & Rose, M. (1964). Developmental study of coordinated eye movements in the human infant. I: Visual acuity in the newborn human: A study based on induced optokinetic nystagmus recorded by electrooculography. Archives of Ophthalmology 71, 865870.CrossRefGoogle Scholar
de Haan, M. (2008). Neurocognitive mechanisms for the development of face processing. In Handbook of Developmental Cognitive Neuroscience (2nd ed.), ed. Nelson, C.A. & Luciana, M.Cambridge, MA: MIT Press.Google Scholar
Dobie, R.A. & Wilson, M.W. (1993). Objective response detection in the frequency domain. Electroencephalography and Clinical Neurophysiology 88, 516524.CrossRefGoogle ScholarPubMed
Dobkins, K.R., Lia, B. & Teller, D.Y. (1997). Infant color vision: Temporal contrast sensitivity functions for chromatic (red/green) stimuli in 3-month-olds. Vision Research 37, 26992716.CrossRefGoogle ScholarPubMed
Fan, J., McCandliss, B.D., Fossella, J., Flombaum, J.I. & Posner, M.I. (2005). The activation of attentional networks. Neuroimage 26, 471479.CrossRefGoogle ScholarPubMed
Farzin, F., Hou, C. & Norcia, A.M. (2012). Piecing it together: Infants’ neural responses to face and object structure. Journal of Vision 12(13), 6.16.14.CrossRefGoogle ScholarPubMed
Fox, R., Aslin, R.N., Shea, S.L. & Dumais, S.T. (1980). Stereopsis in human infants. Science 207, 323324.CrossRefGoogle ScholarPubMed
Gibson, A., Bayford, R.H. & Holder, D.S. (2000). Two-dimensional finite element modelling of the neonatal head. Physiological Measurement 21, 4552.CrossRefGoogle ScholarPubMed
Goodale, M.A. (1996). Visuomotor modules in the vertebrate brain. Canadian Journal of Physiology and Pharmacology 74, 390400.CrossRefGoogle ScholarPubMed
Gunn, A., Cory, E., Atkinson, J., Braddick, O., Wattam-Bell, J., Guzzetta, A. & Cioni, G. (2002). Dorsal and ventral stream sensitivity in normal development and hemiplegia. Neuroreport 13, 843847.CrossRefGoogle ScholarPubMed
Halit, H., de Haan, M. & Johnson, M.H. (2003). Cortical specialisation for face processing: Face-sensitive event-related potential components in 3- and 12-month-old infants. NeuroImage 19, 11801193.CrossRefGoogle ScholarPubMed
Harding, G.F.A., Grose, J., Wilton, A.Y. & Bissenden, J.G. (1989). The pattern reversal VEP in short-gestation infants. Electroencephalography and Clinical Neurophysiology 74, 7680.CrossRefGoogle ScholarPubMed
Harris, L., Atkinson, J. & Braddick, O.J. (1976). Visual contrast sensitivity of a 6-month-old infant measured by the evoked potential. Nature 264, 570571.CrossRefGoogle ScholarPubMed
Hood, B. & Atkinson, J. (1990). Sensory visual loss and cognitive deficits in the selective attentional system of normal infants and neurologically impaired children. Developmental Medicine and Child Neurology 32, 10671077.CrossRefGoogle ScholarPubMed
Hood, B., Atkinson, J., Braddick, O.J. & Wattam-Bell, J. (1992). Orientation selectivity in infancy: Behavioural evidence for temporal sensitivity. Perception 21, 351354.CrossRefGoogle ScholarPubMed
Hou, C., Gilmore, R.O., Pettet, M.W. & Norcia, A.M. (2009). Spatio-temporal tuning of coherent motion evoked responses in 4–6 month old infants and adults. Vision Research 49, 25092517.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160, 106154.CrossRefGoogle ScholarPubMed
James, W. (1891). Principles of Psychology. London: Macmillan.Google Scholar
Jandó, G., Mikó-Baráth, E., Markó, K., Hollódy, K., Török, B. & Kovacs, I. (2012). Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans. Proceedings of the National Academy of Sciences of the United States of America 109, 1104911052.CrossRefGoogle ScholarPubMed
Jeannerod, M. (1997). The Cognitive Neuroscience of Action. Oxford: Blackwell.Google Scholar
Jouen, F., Lepecq, J-C., Gapenne, O. & Bertenthal, B.I. (2000). Optic flow sensitivity in neonates. Infant Behavior and Development 23, 271284.CrossRefGoogle Scholar
Julesz, B., Kropfl, W. & Petrig, B. (1980). Large evoked potentials to dynamic random-dot correlograms and stereograms permit quick determination of stereopsis. Proceedings of the National Academy of Sciences of the United States of America 77, 23482351.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (1998). Development itself is the key to studying developmental disorders is development. Trends in Cognitive Science 2, 389398.CrossRefGoogle ScholarPubMed
Kiorpes, L., Price, T., Hall-Haro, C & Movshon, J.A. (2012). Development of sensitivity to global form and motion in macaque monkeys (Macaca nemestrina). Vision Research 63, 3442.CrossRefGoogle ScholarPubMed
Kravitz, D.J., Saleem, K.S., Baker, C.I. & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews. Neuroscience 12, 217230.CrossRefGoogle ScholarPubMed
Kremenitzer, J.P., Vaughan, H.G., Kurtzberg, D. & Dowling, K. (1979). Smooth-pursuit eye movements in the newborn infant. Child Development 50, 442448.CrossRefGoogle ScholarPubMed
Lee, J., Birtles, D., Wattam-Bell, J., Atkinson, J. & Braddick, O. (2012 a). Latency measures of pattern-reversal VEP in adults and infants: Different information from transient P1 response and steady-state phase. Investigative Ophthalmology & Visual Science 53, 13061314.CrossRefGoogle ScholarPubMed
Lee, J., Birtles, D., Wattam-Bell, J., Atkinson, J. & Braddick, O. (2012 b). Orientation-reversal VEP: Comparison of phase and peak latencies in adults and infants. Vision Research 63, 5057.CrossRefGoogle ScholarPubMed
Lee, J., Wattam-Bell, J., Atkinson, J. & Braddick, O. (2013). Development of visual motion processing: Phase and peak latencies of direction-specific VEP. Journal of Vision 13(4), 4.14.15.CrossRefGoogle Scholar
Mason, A.J.S., Braddick, O. & Wattam-Bell, J. (2003). Motion coherence thresholds in infants–different tasks identify at least two distinct motion systems. Vision Research 43, 11491157.CrossRefGoogle ScholarPubMed
Mercuri, E., Atkinson, J., Braddick, O., Anker, S., Nokes, L., Cowan, F., Rutherford, P.J. & Dubowitz, L. (1997 a). Basal ganglia damage in the newborn infant as a predictor of impaired visual function. Archives of Disease in Childhood 77, F111F114.CrossRefGoogle Scholar
Mercuri, E., Atkinson, J., Braddick, O., Rutherford, M., Cowan, F., Counsell, S., Dubowitz, L. & Bydder, G. (1997 b). Chiari I malformation and white matter changes in asymptomatic young children with Williams syndrome: Clinical and MRI study. European Journal of Pediatric Neurology 5/6, 177181.CrossRefGoogle Scholar
Mercuri, E., Braddick, O., Atkinson, J., Cowan, F., Anker, S., Andrew, R., Wattam-Bell, J., Rutherford, M., Counsell, S. & Dubowitz, L. (1998). Orientation-reversal and phase-reversal visual evoked potentials in full-term infants with brain lesions: A longitudinal study. Neuropaediatrics 29, 16.CrossRefGoogle ScholarPubMed
Mercuri, E., Haataja, L., Guzzetta, A., Anker, S., Cowan, F., Rutherford, M., Andrew, R., Braddick, O., Cioni, G., Dubowitz, L. & Atkinson, J. (1999). Visual function in term infants with hypoxic-ischaemic insults: Correlation with neurodevelopment at 2 years of age. Archives of Disease Child Fetal Neonatal Edition 80, F99F104.CrossRefGoogle Scholar
Mikami, A., Newsome, W.T. & Wurtz, R.H. (1986). Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. Journal of Neurophysiology 55, 13081327.CrossRefGoogle ScholarPubMed
Moore, B.R. (1980). A modification of the Rayleigh test for vector data. Biometrika 67, 175180.CrossRefGoogle Scholar
McCulloch, D.L., Orbach, H. & Skarf, B. (1999). Maturation of the pattern-reversal VEP in human infants: A theoretical framework. Vision Research 39, 36733680.CrossRefGoogle ScholarPubMed
Milner, A.D. & Goodale, M.A. (1995). The Visual Brain in Action. Oxford: Oxford University Press.Google Scholar
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978 a). Receptive field organization of complex cells in the cat’s striate cortex. Journal of Physiology 283, 7999.CrossRefGoogle ScholarPubMed
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978 b). Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. Journal of Physiology 283, 5377.CrossRefGoogle ScholarPubMed
Newman, C., Atkinson, J. & Braddick, O. (2001). The development of reaching and looking preferences in infants to objects of different sizes. Developmental Psychology 37, 561572.CrossRefGoogle ScholarPubMed
Norcia, A.M. & Tyler, C.W. (1985). Spatial frequency sweep VEP: Visual acuity during the first year of life. Vision Research 25, 13991405.CrossRefGoogle ScholarPubMed
Otten, L.J. & Rugg, M.D. (2004). Interpreting event-related brain potentials. In Event-related Potentials: A Methods Handbook, ed. Handy, T.C., pp. 316. Cambridge, MA: MIT Press.Google Scholar
Pei, F., Pettet, M.W., Vildavski, V.Y. & Norcia, A.M. (2005). Event-related potentials show configural specificity of global form processing. Neuroreport 16, 14271430.CrossRefGoogle ScholarPubMed
Petrig, B., Julesz, B., Kropfl, W., Baumgartner, G. & Anliker, M. (1981). Development of stereopsis and cortical binocularity in human infants: Electrophysiological evidence. Science 213, 14021405.CrossRefGoogle ScholarPubMed
Posner, M.I. & Rothbart, M.K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology 58, 123.CrossRefGoogle Scholar
Reynolds, G.D. & Richards, J.E. (2009). Cortical source localization of infant cognition. Developmental Neuropsychology 34, 312329.CrossRefGoogle ScholarPubMed
Richards, J.E., Reynolds, G.D. & Courage, M.I. (2010). The neural bases of infant attention. Current Directions in Psychological Science 19, 4146.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Tehovnik, E.J. (2005). Neural mechanisms underlying target selection with saccadic eye movements. Progress in Brain Research 149, 157171.CrossRefGoogle ScholarPubMed
Shirai, N., Birtles, D., Wattam‐Bell, J., Yamaguchi, M.K., Kanazawa, S., Atkinson, J. & Braddick, O. (2009). Asymmetrical cortical processing of radial expansion/contraction in infants and adults. Developmental Science 12, 946955.CrossRefGoogle ScholarPubMed
Skoczenski, A.M. & Norcia, A.M. (1999). Development of VEP vernier acuity and grating acuity in human infants. Investigative Ophthalmology & Visual Science 40, 24112417.Google ScholarPubMed
Slater, A., Morrison, V. & Rose, D. (1988). Orientation discrimination and cortical function in the human newborn. Perception 17, 597602.CrossRefGoogle ScholarPubMed
Smith, J., Atkinson, J., Braddick, O.J. & Wattam-Bell, J. (1988). Development of sensitivity to binocular correlation and disparity in infancy. Perception 17, 365.Google Scholar
Sokol, S. (1978). Measurement of infant visual acuity from pattern reversal evoked potentials. Vision Research 18, 3339.CrossRefGoogle ScholarPubMed
Sokol, S., Hansen, V.C., Moskowitz, A., Greenfield, P. & Towle, V.L. (1983). Evoked potential and preferential looking estimates of visual acuity in pediatric patients. Ophthalmology 90, 552562.CrossRefGoogle ScholarPubMed
Spekreijse, H. (1978). Maturation of contrast EPs and development of visual resolution. Archives Italienne de Biologie 116, 358369.Google ScholarPubMed
Strasburger, H., Remky, A., Murray, I.J., Hadjizenonos, C. & Rentschler, I. (1996). Objective measurement of contrast sensitivity and visual acuity with the steady-state visual evoked potential. German Journal of Ophthalmology 5, 4252.Google ScholarPubMed
Teller, D.Y. (1984). Linking propositions. Vision Research 24, 12331246.CrossRefGoogle ScholarPubMed
Teller, D.Y. (1997). First glances: The vision of infants. The Friedenwald lecture. Investigative Ophthalmology & Visual Science 38, 21832203.Google ScholarPubMed
Teller, D.Y., Morse, R., Borton, R. & Regal, D. (1974). Visual acuity for vertical and diagonal gratings in human infants. Vision Research 14, 14331439.CrossRefGoogle ScholarPubMed
Wallace, M.T. & Stein, B.E. (2001). Sensory and multisensory responses in the newborn monkey superior colliculus. Journal of Neuroscience 21, 88868894.CrossRefGoogle ScholarPubMed
Wattam-Bell, J. (1985). Analysis of infant visual evoked potentials (VEPs) by a phase-sensitive statistic. Perception 14, A33.Google Scholar
Wattam-Bell, J. (1991). The development of motion-specific cortical responses in infants. Vision Research 31, 287297.CrossRefGoogle Scholar
Wattam-Bell, J. (1992). The development of maximum displacement limits for discrimination of motion direction in infancy. Vision Research 32, 621630.CrossRefGoogle ScholarPubMed
Wattam-Bell, J. (1994). Coherence thresholds for discrimination of motion direction in infants. Vision Research 34, 877883.CrossRefGoogle ScholarPubMed
Wattam-Bell, J. (1996 a). The development of visual motion processing. In Infant Vision, ed. Vital-Durand, F., Braddick, O. & Atkinson, J.Oxford: Oxford University Press.Google Scholar
Wattam-Bell, J. (1996 b). Visual motion processing in one-month-old infants: Habituation experiments. Vision Research 36, 16711677.CrossRefGoogle ScholarPubMed
Wattam-Bell, J. (1996 c). Visual motion processing in one-month-old infants: Preferential looking experiments. Vision Research 36, 16791685.CrossRefGoogle ScholarPubMed
Wattam-Bell, J., Birtles, D., Nyström, P., von Hofsten, C., Rosander, K., Anker, S., Atkinson, J. & Braddick, O. (2010). Reorganization of global form and motion processing during human visual development. Current Biology 20, 411415.CrossRefGoogle ScholarPubMed
Wattam-Bell, J., Chiu, M. & Kulke, L. (2011). Developmental reorganisation of visual motion pathways. Applied Vision Association Christmas meeting 2011;http://www.theava.net/conf/index.php?conference=Meeting&schedConf=X2011&page=paper&op=view&path%5B%5D=312.Google Scholar
Weiskrantz, L. (1996). Blindsight revisited. Current Opinion in Neurobiology 6, 215220.CrossRefGoogle ScholarPubMed
Wood, C.C. & Allison, T. (1981). Interpretation of evoked potentials: A neurophysiological perspective. Canadian Journal of Psychology 35, 113135.CrossRefGoogle ScholarPubMed
Yonas, A., Elieff, C.A. & Arterberry, M.E. (2002). Emergence of sensitivity to pictorial depth cues: Charting development in individual infants. Infant Behavior & Development 25, 495514.CrossRefGoogle Scholar
Yonas, A., Granrud, C.E. & Pettersen, L. (1985). Infants’ sensitivity to relative size information for distance. Developmental Psychology 21, 161167.CrossRefGoogle Scholar
Yonas, A., Pettersen, L. & Lockman, J.J. (1979). Young infants’ sensitivity to optical information for collision. Canadian Journal of Psychology 33, 268276.CrossRefGoogle ScholarPubMed