Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T14:32:46.721Z Has data issue: false hasContentIssue false

The maximum range and timing of excitatory contextual modulation in monkey primary visual cortex

Published online by Cambridge University Press:  04 October 2006

D.M. ALEXANDER
Affiliation:
Faculty of Information Technology, University of Technology, Sydney, Australia
J.J. WRIGHT
Affiliation:
The Liggins Institute, University of Auckland, Auckland, New Zealand

Abstract

Contextual modulations of receptive field properties by distal stimulus configurations have been shown for a variety of stimulus paradigms. A survey of excitatory contextual modulation data for V1 shows the maximum scale of interactions, measured in terms of distance in V1, to be between 10 mm and 30 mm. Different types of excitatory contextual modulation in V1 occur throughout the interval of 40–250 ms after stimulus delivery. This window provides opportunity for global propagation of visual contextual information to a subset of V1 neurons, via several routes within the visual system. We propose a number of experiments and analyses to confirm the results from this empirical survey.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albright, T.D. & Desimone, R. (1987). Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Experimental Brain Research 65, 582592.Google Scholar
Alexander, D.M., Bourke, P.D., Sheridan, P., Konstandatos, O., & Wright, J.J. (2004). Intrinsic connections in tree shrew V1 imply a global to local mapping. Vision Research 44, 857876.CrossRefGoogle Scholar
Angelucci, A. & Bullier, J. (2003). Reaching beyond the classical receptive field of V1 neurons: Horizontal or feedback axons? The Journal of Physiology (Paris) 97, 141154.Google Scholar
Angelucci, A., Levitt, J.B., Walton, E.J., Hupe, J.M., Bullier, J., & Lund, J.S. (2002). Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience 22, 86338646.Google Scholar
Bair, W., Cavanaugh, J.R., & Movshon, J.A. (2003). Time course and time-distance relationships for surround suppression in Macaque V1 neurons. Journal of Neuroscience 23, 76907701.Google Scholar
Basole, A., White, L.E., & Fitzpatrick, D. (2003). Mapping multiple features in the population response of visual cortex. Nature 423, 986990.CrossRefGoogle Scholar
Brewer, A.A., Press, W.A., Logothetis, N.K., & Wandell, B.A. (2002). Visual areas in Macaque cortex measured using functional magnetic resonance imaging. Journal of Neuroscience 22, 1041610426.Google Scholar
Bullier, J., Hupe, J.M., James, A.C., & Girard, P. (2001). The role of feedback connections in shaping the responses of visual cortical neurons. Progress in Brain Research 134, 193204.CrossRefGoogle Scholar
Cavanaugh, J.R., Bair, W., & Movshon, J.A. (2002). Selectivity and spatial distribution of signals from the receptive field surround in Macaque V1 neurons. Journal of Neurophysiology 88, 25472556.CrossRefGoogle Scholar
De Valois, K.K., De Valois, R.L., & Yund, E.W. (1979). Responses of striate cortex cells to grating and checkerboard patterns. Journal of Physiology 291, 483505.CrossRefGoogle Scholar
Eckhorn, R., Bruns, A., Saam, M., Gail, A., Gabriel, A., & Brinksmeyer, H.J. (2001). Flexible cortical gamma-band correlations suggest neural principles of visual processing. Visual Cognition 8, 519530.CrossRefGoogle Scholar
Eckhorn, R., Gail, A., Bruns, A., Gabriel, A., Al-Shaikhli, B., & Saam, M. (2004). Neural mechanisms of visual associative processing. Acta Neurobiologiae Experimentalis 64, 239252.Google Scholar
Ffytche, D.H., Guy, C.N., & Zeki, S. (1995). The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain 118, 13751394.CrossRefGoogle Scholar
Fiorani, Junior M., Rosa, M.G., Gattass, R., & Rocha-Miranda, C.E. (1992). Dynamic surrounds of receptive fields in primate striate cortex: A physiological basis for perceptual completion? Proceedings of the National Academy of Sciences of the United States of America 89, 85478551.Google Scholar
Fischer, B. & Kruger, J. (1974). The shift-effect in the cat's lateral geniculate neurons. Experimental Brain Research 21, 225227.Google Scholar
Freeman, W.J. & Barrie, J.M. (2000). Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit. Journal of Neurophysiology 84, 12661278.Google Scholar
Gattass, R., Gross, C.G., & Sandell, J.H. (1981). Visual topography of V2 in the Macaque. Journal of Comparative Neurology 201, 519539.CrossRefGoogle Scholar
Gawne, T.J. & Martin, J.M. (2002). Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. Journal of Neurophysiology 88, 21782186.CrossRefGoogle Scholar
Gawne, T.J. & Woods, J.M. (2003). The responses of visual cortical neurons encode differences across saccades. Neuroreport 14, 105109.CrossRefGoogle Scholar
Geisler, W.S., Albrecht, D.G., Crane, A.M., & Stern, L. (2001). Motion direction signals in the primary visual cortex of cat and monkey. Visual Neuroscience 18, 501516.CrossRefGoogle Scholar
Gershon, E.D., Wiener, M.C., Latham, P.E., & Richmond, B.J. (1998). Coding strategies in monkey V1 and inferior temporal cortices. Journal of Neurophysiology 79, 11351144.Google Scholar
Girard, P., Hupe, J.M., & Bullier, J. (2001). Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. Journal of Neurophysiology 85, 13281331.Google Scholar
Heller, J., Hertz, J.A., Kjaer, T.W., & Richmond, B.J. (1995). Information flow and temporal coding in primate pattern vision. Journal of Computational Neuroscience 2, 7593.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106154.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London) 195, 215243.CrossRefGoogle Scholar
Hupe, J.M., James, A.C., Girard, P., Lomber, S.G., Payne, B.R., & Bullier, J. (2001). Feedback connections act on the early part of the responses in monkey visual cortex. Journal of Neurophysiology 85, 134145.Google Scholar
Ikeda, H. & Wright, M.J. (1972). The periphery effect and its relation to the receptive field organization of ‘transient’ retinal ganglion cells. Journal of Physiology 226, 8182.Google Scholar
Juergens, E., Guettler, A., & Eckhorn, R. (1999). Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Experimental Brain Research 129, 247259.CrossRefGoogle Scholar
Kapadia, M.K., Westheimer, G., & Gilbert, C.D. (1999). Dynamics of spatial summation in primary visual cortex of alert monkeys. Proceedings of the National Academy of Sciences of the United States of America 96, 1207312078.CrossRefGoogle Scholar
Khayat, P.S., Spekreijse, H., & Roelfsema, P.R. (2004). Correlates of transsaccadic integration in the primary visual cortex of the monkey. Proceedings of the National Academy of Sciences of the United States of America 101, 1271212717.CrossRefGoogle Scholar
Kinoshita, M. & Komatsu, H. (2001). Neural representation of the luminance and brightness of a uniform surface in the Macaque primary visual cortex. Journal of Neurophysiology 86, 25592570.Google Scholar
Kruger, J. (1977). The shift-effect in the lateral geniculate body of the rhesus monkey. Experimental Brain Research 29, 387392.Google Scholar
Kruger, J., Fischer, B., & Barth, R. (1975). The shift-effect in retinal ganglion cells of the rhesus monkey. Experimental Brain Research 23, 443446.Google Scholar
Lamme, V.A. (1995). The neurophysiology of figure-ground segregation in primary visual cortex. Journal of Neuroscience 15, 16051615.Google Scholar
Lamme, V.A., Super, H., Landman, R., Roelfsema, P.R., & Spekreijse, H. (2000). The role of primary visual cortex (V1) in visual awareness. Vision Research 40, 15071521.CrossRefGoogle Scholar
Lamme, V.A., Super, H., & Spekreijse, H. (1998a). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology 8, 529535.Google Scholar
Lamme, V.A., Zipser, K., & Spekreijse, H. (1998b). Figure-ground activity in primary visual cortex is suppressed by anesthesia. Proceedings of the National Academy of Sciences of the United States of America 951, 32633268.Google Scholar
Lee, T.S. & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America, A, Optics, Image Science, & Vision 20, 14341448.CrossRefGoogle Scholar
Lee, T.S., Mumford, D., Romero, R., & Lamme, V.A. (1998). The role of the primary visual cortex in higher level vision. Vision Research 38, 24292454.CrossRefGoogle Scholar
Lee, T.S. & Nguyen, M. (2001). Dynamics of subjective contour formation in the early visual cortex. Proceedings of the National Academy of Sciences of the United States of America 98, 19071911.CrossRefGoogle Scholar
Li, W., Their, P., & Wehrhahn, C. (2001). Neuronal responses from beyond the classical receptive field in V1 of alert monkeys. Experimental Brain Research 139, 359371.CrossRefGoogle Scholar
Li, W., Their, P., & Wehrhahn, C. (2000). Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. Journal of Neurophysiology 83, 941954.Google Scholar
Marrocco, R.T., McClurkin, J.W., & Young, R.A. (1982). Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. Journal of Neuroscience 2, 256263.Google Scholar
McIlwain, J.T. (1964). Some evidence concerning the physiological basis of the periphery effect in the cat's retina. Experimental Brain Research 1, 265271.Google Scholar
Movshon, J.A., Thompson, I.D., & Tolhurst, D.J. (1978). Receptive field organization of complex cells in the cat's striate cortex. Journal of Physiology 283, 7999.CrossRefGoogle Scholar
Richmond, B.J., Hertz, J.A., & Gawne, T.J. (1999). The relation between V1 neuronal responses and eye movement-like stimulus presentations. Neurocomputing 26–27, 247254.CrossRefGoogle Scholar
Ringach, D.L., Hawken, M.J., & Shapley, R. (1997). Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281284.CrossRefGoogle Scholar
Rodman, H.R., Gross, C.G., & Albright, T.D. (1990). Afferent basis of visual response properties in area MT of the Macaque. II. Effects of superior colliculus removal. Journal of Neuroscience 10, 11541164.Google Scholar
Roelfsema, P.R., Khayat, P.S., & Spekreijse, H. (2003). Subtask sequencing in the primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America 100, 54675472.CrossRefGoogle Scholar
Roelfsema, P.R., Lamme, V.A., & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the Macaque monkey. Nature 395, 376381.CrossRefGoogle Scholar
Roelfsema, P.R. & Spekreijse, H. (1999). Correlates of a gradual spread of attention over a traced curve in macaque area V1. Society for Neuroscience Abstracts 25, 4.Google Scholar
Rols, G., Tallon-Baudry, C., Girard, P., Bertrand, O., & Bullier, J. (2001). Cortical mapping of gamma oscillations in areas V1 and V4 of the Macaque monkey. Visual Neuroscience 18, 527540.CrossRefGoogle Scholar
Rossi, A.F., Desimone, R., & Ungerleider, L.G. (2001). Contextual modulation in primary visual cortex of Macaques. Journal of Neuroscience 21, 16981709.Google Scholar
Sceniak, M.P., Ringach, D.L., Hawken, M.J., & Shapley, R. (1999). Contrast's effect on spatial summation by Macaque V1 neurons. Nature Neuroscience 2, 733739.CrossRefGoogle Scholar
Schiller, P.H., Finlay, B.L., & Volman, S.F. (1976). Quantitative studies of single-cell properties in monkey striate cortex. V. Multivariate statistical analyses and models. Journal of Neurophysiology 39, 13621374.Google Scholar
Schwartz, E.L. (1977). Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biological Cybernetics 25, 181194.CrossRefGoogle Scholar
Smith, M.A., Bair, W., & Movshon, J.A. (2002). Signals in Macaque striate cortical neurons that support the perception of glass patterns. Journal of Neuroscience 22, 83348345.Google Scholar
Standage, G.P. & Benevento, L.A. (1983). The organization of connections between the pulvinar and visual area MT in the Macaque monkey. Brain Research 262, 288294.CrossRefGoogle Scholar
Sugita, Y. (1999). Grouping of image fragments in primary visual cortex. Nature 401, 269272.CrossRefGoogle Scholar
Super, H. & Roelfsema, P.R. (2005). Chronic multiunit recordings in behaving animals: Advantages and limitations. Progress in Brain Research 147, 263282.CrossRefGoogle Scholar
Tootell, R.B., Switkes, E., Silverman, M.S., & Hamilton, S.L. (1988). Functional anatomy of the Macaque striate cortex. II. Retinotopic organization. Journal of Neuroscience 8, 15311568.Google Scholar
Ungerleider, L.G., Desimone, R., Galkin, T.W., & Mishkin, M. (1984). Subcortical projections of area MT in the Macaque. Journal of Comparative Neurology 223, 368386.CrossRefGoogle Scholar
Van Essen, D.C., Newsome, W.T., & Maunsell, J.H. (1984). The visual field representation in striate cortex of the Macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research 24, 429448.CrossRefGoogle Scholar
Wachtler, T., Sejnowski, T.J., & Albright, T.D. (2003). Representation of color stimuli in awake Macaque primary visual cortex. Neuron 37, 681691.CrossRefGoogle Scholar
Wright, J.J., Alexander, D.M., & Bourke, P.D. (2006). Contribution of lateral interactions in V1 to organization of response properties. Vision Research 46, 27032720.CrossRefGoogle Scholar
Yukie, M. & Iwai, E. (1981). Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in Macaque monkeys. Journal of Comparative Neurology 201, 8197.CrossRefGoogle Scholar
Zhou, H., Friedman, H.S., & von der Heydt, R. (2000). Coding of border ownership in monkey visual cortex. Journal of Neuroscience 20, 65946611.Google Scholar
Zipser, K., Lamme, V.A., & Schiller, P.H. (1996). Contextual modulation in primary visual cortex. Journal of Neuroscience 16, 73767389.Google Scholar
Zufferey, P.D., Jin, F., Nakamura, H., Tettoni, L., & Innocenti, G.M. (1999). The role of pattern vision in the development of corticocortical connections. European Journal of Neuroscience 11, 26692688.CrossRefGoogle Scholar