Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T21:04:21.942Z Has data issue: false hasContentIssue false

Mechanism of anomalous retinal correspondence: Maintenance of binocularity with alteration of receptive-field position in the lateral suprasylvian (LS) visual area of strabismic cats

Published online by Cambridge University Press:  02 June 2009

Simon Grant
Affiliation:
Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK Department of Anatomy, Medical College of Pennsylvania, Philadelphia
Nancy E. J. Berman
Affiliation:
Department of Anatomy, Medical College of Pennsylvania, Philadelphia

Abstract

We have examined the effects of rearing kittens with a unilateral convergent strabismus, induced surgically at 3 weeks of age, on the binocularity (ocular dominance) and receptive-field position of neurons in the motion-sensitive lateral suprasylvian (LS) area of cat extrastriate cortex. Data were compared to those obtained from area 17 in the same animals, and from the two areas of cortex in normal adult cats. Interocular alignment of the operated cats was assessed in alert adults using corneal reflex photography and during recording from the positions of retinal landmarks under paralysis. The strabismus magnitude in each operated cat was calculated by comparison with equivalent data from the normal animals.

Strabismus always caused a major loss of binocularity in area 17. The remaining binocular neurons had receptive-field (RF) pairs arising from positions of normal correspondence in the two retinae and would thus have been responsive to different regions of visual space through the misaligned eyes in the alert animal. In area LS, the effects were dependent on the strabismus magnitude. In the group of four cats with pronounced strabismus (18–30 deg crossed), a loss of binocularity occurred in area LS equivalent in severity to that in area 17. The majority of the remaining binocular LS neurons possessed RF pairs in normal retinal correspondence and would thus, in the alert animal, have received spatially disparate visual input through the two eyes. This also occurred in three other cats with more moderate strabismus (11–15 deg crossed), although only a small breakdown in the binocularity of area LS was apparent. The group of cats with mild strabismus (≤10 deg crossed) had normal proportions of binocular neurons in area LS. In three of these cats, the maintenance of binocularity was accompanied by shifts in RF position, with visual inputs arising from anomalous retinal locations. These shifts compensated, in part, for the strabismus angle present in each cat, so that most of the binocular LS neurons would have received inputs from regions of visual correspondence through the misaligned eyes when the animal was alert.

Similar mechanisms could afford a basis for the binocular visual compensations that occur in humans with small-angle strabismus of early onset. If so, anomalous retinal correspondence in such individuals would have as a locus areas of extrastriate cortex with a role in motion perception, and would involve alterations to the neural substrate underlying normal binocular vision.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagolini, B. (1967). Anomalous correspondence: definition and diagnostic methods. Documenta Ophthalmologica 23, 346398.CrossRefGoogle ScholarPubMed
Barlow, H.B., Blakemore, C. & Pettigrew, J.D. (1967). The neural basis of binocular depth discrimination. Journal of Physiology (London) 193, 327342.Google Scholar
Bennett, M.J., Smith, E.L. III., Harwerth, R.S. & Crawford, M.L.J. (1980). Ocular dominance, eye alignment, and visual acuity in kittens reared with an optically induced squint. Brain Research 193, 3345.CrossRefGoogle ScholarPubMed
Berkley, M.A. & Sprague, J.M. (1979). Striate cortex and visual acuity functions in the cat. Journal of Comparative Neurology 187, 679702.CrossRefGoogle ScholarPubMed
Berman, N.E. & Murphy, E.H. (1982). The critical period for alteration in cortical binocularity resulting from divergent and convergent strabismus. Developmental Brain Research 2, 181202.CrossRefGoogle Scholar
Berman, N.E.J. & Payne, B.R. (1983). Alterations in connections of the corpus callosum following convergent and divergent strabismus. Brain Research 274, 201212.CrossRefGoogle ScholarPubMed
Berman, N.E.J., Wilkes, M.E. & Payne, B.R. (1987). Organization of direction selectivity in areas 17 and 18 of cat cerebral cortex. Journal of Neurophysiology 58, 676699.CrossRefGoogle ScholarPubMed
Berman, N.E.J., Grant, S., Wilkes, M., Shipp, S.D. & Wilson, R.I. (1989). Mechanism of anomalous retinal correspondence: alterations of receptive field position in the lateral suprasylvian (LS) area of strabismic cats. Neuroscience Abstracts 15, 794.Google Scholar
Bishop, P.O. (1973). Neurophysiology of binocular single vision and stereopsis. In Handbook of Sensory Physiology, ed. Jung, R., pp. 255307. New York: Springer.Google Scholar
Bishop, P.O., Kozak, W. & Vakkur, G.J. (1962). Some quantitative aspects of the cat's eye: axis and plane of reference, visual field coordinates and optics. Journal of Physiology (London) 163, 466502.Google Scholar
Blake, R. & Hirsch, H.V.B. (1975). Deficits in binocular depth perception in cats after alternating monocular deprivation. Science 190, 11141116.CrossRefGoogle ScholarPubMed
Blakemore, C. (1970). The representation of three-dimensional visual space in the cat's striate cortex. Journal of Physiology (London) 209, 155178.Google Scholar
Blakemore, C., Van Sluyters, R.C., Peck, C.K. & Hein, A. (1975). Development of cat visual cortex following rotation of one eye. Nature 257, 584586.CrossRefGoogle ScholarPubMed
Blakemore, C. & Zumbroich, T.J. (1987). Stimulus selectivity and functional organization in the lateral suprasylvian visual cortex of the cat. Journal of Physiology (London) 389, 569603.Google Scholar
Bruce, C.J., Isley, M.R. & Shinkman, P.G. (1981). Visual experience and development of interocular orientation disparity in visual cortex. Journal of Neurophysiology 46, 215228.CrossRefGoogle ScholarPubMed
Camarda, R. & Rizzolatti, G. (1976). Visual receptive fields in the lateral suprasylvian area (Clare-Bishop area) of the cat. Brain Research 101, 427443.CrossRefGoogle ScholarPubMed
Cooper, M.L., & Pettigrew, J.D. (1979). A neurophysiological determination of the vertical horopter in the cat and owl. Journal of Comparative Neurology 184, 126.CrossRefGoogle Scholar
Crommelinck, M. & Roucoux, A. (1976). Characteristics of cat's eye saccades in different states of alertness. Brain Research 103, 574578.CrossRefGoogle ScholarPubMed
Cynader, M. (1979). Interocular alignment following visual deprivation in the cat. Investigative Ophthalmology and Visual Science 18, 726741.Google ScholarPubMed
Cynader, M., Gardner, J.C. & Mustari, M. (1984). Effects of neonatally induced strabismus on binocular responses in cat area 18. Experimental Brain Research 53, 384399.CrossRefGoogle ScholarPubMed
dr Stefano, M., Morrone, M.C. & Burr, D.C. (1985). Visual acuity of neurones in the cat lateral suprasylvian cortex. Brain Research 331, 382385.CrossRefGoogle Scholar
Duke-Elder, S. & Wybar, K. (1973). Ocular Motility and Strabismus: System of Ophthalmology, Vol. 6. St. Louis, MO: CV Mosby.Google Scholar
Dürsteler, M.R. & Von Der Heydt, R. (1983). Plasticity in the binocular correspondence of striate cortical receptive fields in kittens. Journal of Physiology (London) 345, 87105.Google Scholar
Fox, R., Aslin, R.N., Shea, S.L. & Dumais, S.T. (1980). Stereopsis in human infants. Science 207, 323324.CrossRefGoogle ScholarPubMed
Gordon, B. & Gummow, L. (1975). Effects of extraocular muscle section on receptive fields in cat superior colliculus. Vision Research 15, 10111019.CrossRefGoogle ScholarPubMed
Grant, S. & Keating, M.J. (1986). Normal maturation involves systematic changes in binocular visual connections in Xenopus laevis. Nature 322, 258261.CrossRefGoogle ScholarPubMed
Grant, S. & Keating, M.J. (1989a). Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry. Experimental Brain Research 75, 99116.CrossRefGoogle ScholarPubMed
Grant, S. & Keating, M.J. (1989b). Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. II. Abnormalities following early visual deprivation. Experimental Brain Research 75, 117132.CrossRefGoogle ScholarPubMed
Grant, S. & Keating, M.J. (1989c). Temporal profile of the “critical period” for intertectal plasticity in Xenopus laevis: relation to normal developmental demand and extension by dark rearing. Neuroscience Abstracts 15, 1213.Google Scholar
Grant, S. & Shipp, S.D. (1991). Visuotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of cat cortex: a physiological and connectional study. Visual Neuroscience 6, 315338.CrossRefGoogle ScholarPubMed
Guitton, D., Crommelinck, M. & Roucoux, A. (1980). Stimulation of the superior colliculus in the alert cat. Eye movements and neck EMG activity evoked when the head is restrained. Experimental Brain Research 39, 6373.Google ScholarPubMed
Hardy, S.C. & Stein, B.E. (1988). Small lateral suprasylvian cortex lesions produce visual neglect and decreased activity in the superior colliculus. Journal of Comparative Neurology 273, 527542.CrossRefGoogle ScholarPubMed
Heath, C.J. & Jones, E.G. (1971). The anatomical organization of the suprasylvian gyrus of the cat. Ergebnisse der Anatomie und Entwicklungsgeschichte 45, 164.Google ScholarPubMed
Held, R., Birch, E. & Gwiazda, J. (1980). Stereoacuity of human infants. Proceedings of the National Academy of Sciences of the U.S.A. 77, 55725574.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction, and functional architecture in the cats visual cortex. Journal of Physiology (London) 160, 106154.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1963). Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. Journal of Neurophysiology 26, 9941002.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology 28, 10411059.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology (London) 206, 419436.Google Scholar
Hughes, A. (1972). Vergence in the cat. Vision Research 12, 19611994.CrossRefGoogle ScholarPubMed
Hughes, A. (1975). A quantitative analysis of the cat retinal ganglion cell topography. Journal of Comparative Neurology 163, 107128.CrossRefGoogle ScholarPubMed
Hughes, H.C. & Sprague, J.M. (1986). Cortical mechanisms for local and global analysis of visual space in the cat. Experimental Brain Research 61, 332354.CrossRefGoogle ScholarPubMed
Innocenti, G.M. & Frost, D.O. (1979). Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280, 231234.CrossRefGoogle ScholarPubMed
Innocenti, G.M. & Clarke, S. (1984). The organization of immature callosal connections. Journal of Comparative Neurology 230, 287309.CrossRefGoogle ScholarPubMed
Jones, K.R., Spear, P.D. & Tong, L. (1984). Critical periods for effects of monocular deprivation: differences between striate and extrastriate cortex. Journal of Neuroscience 4, 25432552.CrossRefGoogle ScholarPubMed
Joshua, D.E. & Bishop, P.O. (1970). Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interactions of peripheral single units in cat striate cortex. Experimental Brain Research 10, 389416.CrossRefGoogle ScholarPubMed
Kaye, M., Mitchell, D.E. & Cynader, M. (1981). Selective loss of binocular depth perception after ablation of cat visual cortex. Nature 293, 6062.CrossRefGoogle ScholarPubMed
Keating, M.J., Beazley, L.D., Feldman, J.D. & Gaze, R.M. (1975). Binocular interaction and intertectal neuronal connexions in Xenopus laevis—dependence upon developmental stage. Proceedings of the Royal Society B (London) 191, 445466.Google Scholar
Keating, M.J. & Feldman, J.D. (1975). Visual deprivation and intertectal neuronal connections in Xenopus laevis. Proceedings of the Royal Society B (London) 191, 467474.Google Scholar
Keller, G. & Innocenti, G.M. (1981). Callosal connections of suprasylvian visual areas in the cat. Neuroscience 6, 703712.CrossRefGoogle ScholarPubMed
Kennedy, H. & Magnin, M. (1977). Saccadic influences on single neuron activity in the medial bank of the cat's suprasylvian sulcus (Clare-Bishop area). Experimental Brain Research 27, 315317.Google ScholarPubMed
Kitaoji, H. & Toyama, K. (1987). Preservation of position and motion stereopsis in strabismic subjects. Investigative Ophthalmology and Visual Science 28, 12601267.Google ScholarPubMed
Komatsu, Y., Shibuki, K. & Toyama, K. (1983). Eye-movement-related activities in cells of the lateral suprasylvian cortex of the cat. Neuroscience Letters 41, 271276.CrossRefGoogle ScholarPubMed
Lehmkuhle, S., Kratz, K.E. & Sherman, S.M. (1982). Spatial and temporal sensitivity of normal and amblyopic cats. Journal of Neurophysiology 48, 372387.CrossRefGoogle ScholarPubMed
Lund, R.D., Mitchell, D.E. & Henry, G.H. (1978). Squint-induced modification of callosal connections in cats. Brain Research 144, 169172.CrossRefGoogle ScholarPubMed
Marzi, C.A., Antonini, A., di Stefano, M. & Legg, C.R. (1980). Callosum-dependent binocular interactions in the lateral suprasylvian area of Siamese cats which lack binocular neurons in areas 17 and 18. Brain Research 197, 230235.CrossRefGoogle Scholar
Marzi, C.A., di Stefano, M., Lepore, F. & Bedard, S. (1986). Role of the corpus callosum for binocular coding in Siamese and early-strabismic cats. In Two Hemispheres—One Brain, ed. Lepore, F., Ptito, M. & Jasper, H.H., pp. 299313. New York: Liss.Google Scholar
Mastronarde, D.N., Thibeault, M.A. & Dubin, M.W. (1984). Non-uniform postnatal growth of the cat retina. Journal of Comparative Neurology 228, 598608.CrossRefGoogle ScholarPubMed
McCall, M.A., Tong, L. & Spear, P.D. (1988). Development of neuronal responses in cat posteromedial lateral suprasylvian visual cortex. Brain Research 447, 6778.CrossRefGoogle ScholarPubMed
McCormack, G. (1990). Normal retinotopic mapping in human strabismus with anomalous retinal correspondence. Investigative Ophthalmology and Visual Science 31, 559568.Google ScholarPubMed
McIlwain, J.T. (1977). Orientation of slit pupil and visual streak in the eye of the cat. Journal of Comparative Neurology 175, 337344.CrossRefGoogle ScholarPubMed
Mitchell, D.E. (1980). Sensitive periods in visual development. In Development of Perception, Vol. II, ed. Aslin, R.N., Alberts, J.R. & Petersen, M.R., pp. 343. New York: Academic Press.Google Scholar
Montero, V.M. (1981). Topography of the cortico-cortical connections from the striate cortex in the cat. Brain Behaviour and Evolution 18, 194218.CrossRefGoogle ScholarPubMed
Motter, B.C., Steinmetz, M.A., Duffy, C.J. & Mountcastle, V.B. (1987). Functional properties of parietal visual neurons: mechanisms of directionality along a single axis. Journal of Neuroscience 7, 154176.CrossRefGoogle ScholarPubMed
Mower, G.D., Christen, W.G., Burchfiel, J.L. & Duffy, F.H. (1984). Microiontophoretic bicuculline restores binocular responses to visual cortical neurons in strabismic cats. Brain Research 309, 168172.CrossRefGoogle ScholarPubMed
Nelson, J.I. (1981). A neurophysiological model for anomalous correspondence based on mechanisms of sensory fusion. Documenta Ophthalmologica 51, 3100.CrossRefGoogle ScholarPubMed
Nelson, J.I. (1988). Binocular vision: disparity detection and anomalous correspondence. In Optometry, ed. Edwards, K. & Llewellyn, R., pp. 217237. London: Butterworths.Google ScholarPubMed
Nelson, J.I., Kato, H. & Bishop, P.O. (1977). Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex. Journal of Neurophysiology 40, 260283.CrossRefGoogle Scholar
Nikara, T., Bishop, P.O. & Pettigrew, J.D. (1968). Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Experimental Brain Research 6, 353372.CrossRefGoogle ScholarPubMed
Noda, H., Creutzfeldt, O.D. & Freeman, R.B. Jr, (1971). Binocular interaction in the visual cortex of awake cats. Experimental Brain Research 12, 406421.CrossRefGoogle Scholar
Olson, C.R. (1980). Spatial localization in cats reared with strabismus. Journal of Neurophysiology 43, 792806.CrossRefGoogle ScholarPubMed
Olson, C.R. & Freeman, R.D. (1978). Eye alignment in kittens. Journal of Neurophysiology 41, 848859.CrossRefGoogle ScholarPubMed
Packwood, J. & Gordon, B. (1975). Stereopsis in normal domestic cat, Siamese cat, and cat raised with alternating monocular occlusion. Journal of Neurophysiology 38, 14851499.CrossRefGoogle Scholar
Palmer, L.A., Rosenquist, A.C. & Tusa, R.J. (1978). The retinotopic organization of lateral suprasylvian visual areas in the cat. Journal of Comparative Neurology 177, 237256.CrossRefGoogle ScholarPubMed
Pasternak, T., Horn, K.M. & Maunsell, J.H.R. (1989). Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat. Visual Neuroscience 3, 365375.CrossRefGoogle ScholarPubMed
Petrig, B., Julesz, B., Kropfl, W., Baumgartner, G. & Anliker, M. (1981). Development of stereopsis and cortical binocularity in human infants: electrophysiological evidence. Science 213, 14021405.CrossRefGoogle ScholarPubMed
Pettigrew, J.D. (1974). The effect of visual experience on the development of stimulus specificity by kitten cortical neurones. Journal of Physiology (London) 237, 4974.Google Scholar
Pettigrew, J.D. (1978). The paradox of the critical period for striate cortex. In Neuronal Plasticity, ed. Cotman, L.W., pp. 311330. New York: Raven Press.Google Scholar
Pettigrew, J.D., Cooper, M.L. & Blasdel, G.G. (1979). Improved use of tapetal reflection for eye position monitoring. Investigative Ophthalmology and Visual Science 18, 490495.Google ScholarPubMed
Pöppel, E., Stoerig, P., Logothetis, N., Fries, W., Boergen, K.-P., Oertel, W. & Zihl, J. (1987). Plasticity and rigidity in the representation of the human visual field. Experimental Brain Research 68, 445448.CrossRefGoogle ScholarPubMed
Price, D.J., Zumbroich, T.J. & Blakemore, C. (1988). Development of stimulus selectivity and functional organization in the suprasylvian visual cortex of the cat. Proceedings of the Royal Society B (London) 233, 123163.Google Scholar
Rauschecker, J.P., Von Grünau, M.W. & Poulin, C. (1987). Centrifugal organization of direction preferences in the cat's lateral suprasylvian visual cortex and its relation to flow field processing. Journal of Neuroscience 7, 943958.CrossRefGoogle ScholarPubMed
Roucoux, A., Guitton, D. & Crommelinck, M. (1980). Stimulation of the superior colliculus in the alert cat. Eye and head movements evoked when the head is unrestrained. Experimental Brain Research 39, 7585.CrossRefGoogle ScholarPubMed
Sanderson, K.J. (1972). Does rolling of the eye occur in the anaesthetised paralysed cat? Vision Research 12, 10451050.CrossRefGoogle ScholarPubMed
Sanides, F. & Hoffman, J. (1969). Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. Zeitschrift für Hirnforschung 11, 79104.Google Scholar
Segraves, M.A. & Rosenquist, A.C. (1982). The distibution of the cells of origin of callosal projections in cat visual cortex. Journal of Neuroscience 2, 10791089.CrossRefGoogle Scholar
Shatz, C.J., Lindström, S. & Wiesel, T.N. (1977). The distribution of afferents representing the right and left eyes in the cat's visual cortex. Brain Research 131, 103116.CrossRefGoogle ScholarPubMed
Sherk, H. (1986). Location and connections of visual cortical areas in the cat's suprasylvian sulcus. Journal of Comparative Neurology 247, 131.CrossRefGoogle ScholarPubMed
Sherman, S.M. (1972). Development of interocular alignment in cats. Brain Research 37, 187203.CrossRefGoogle ScholarPubMed
Shimojo, S., Bauer, J. JrO'Connell, K.M. & Held, R. (1986). Prestereoptic binocular vision in infants. Vision Research 26, 501510.CrossRefGoogle ScholarPubMed
Shinkman, P.G., Isley, M.R. & Rogers, D.C. (1983). Prolonged dark rearing and development of interocular orientation disparity in visual cortex. Journal of Neurophysiology 49, 717729.CrossRefGoogle ScholarPubMed
Shipp, S. & Grant, S. (1991). The organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex. Visual Neuroscience 6, 339355.CrossRefGoogle ScholarPubMed
Shlaer, R. (1971). Shift in binocular disparity causes compensatory change in the cortical structure of kittens. Science 173, 638641.CrossRefGoogle ScholarPubMed
Singer, W., Rauschecker, J. & Von Grünau, M. (1979). Squint affects striate cortex cells encoding horizontal image movements. Brain Research 170, 182186.CrossRefGoogle ScholarPubMed
Sireteanu, R. & Fronius, M. (1981). Naso-temporal asymmetries in amblyopic vision: consequence of long-term interocular suppression. Vision Research 21, 10551063.CrossRefGoogle ScholarPubMed
Sireteanu, R., Fronius, M. & Singer, W. (1981). Binocular interaction in the peripheral visual field of humans with strabismic and anisometric amblyopia. Vision Research 21, 10651074.CrossRefGoogle Scholar
Sireteanu, R., Best, J. & Greuel, J. (1988). Squint-induced modification of visual receptive-field properties in single cells of the lateral suprasylvian area of the cat. European Journal of Neuroscience (Suppl.) 1, 270.Google Scholar
Sireteanu, R. & Fronius, M. (1989). Different patterns of retinal correspondence in the central and periphery visual field of strabismics. Investigative Ophthalmology and Visual Science 30, 20232033.Google ScholarPubMed
Spear, P.D. & Baumann, T.P. (1975). Receptive field characteristics of single neurons in lateral suprasylvian visual area of the cat. Journal of Neurophysiology 38, 14031420.CrossRefGoogle ScholarPubMed
Spear, P.D. & Tong, L. (1980). Effects of monocular deprivation on neurons in cat's lateral suprasylvian visual area. I. Comparison of binocular and monocular segments. Journal of Neurophysiology 44, 568584.CrossRefGoogle Scholar
Spear, P.D., Kalil, R.E. & Tong, L.T. (1980). Functional compensation in lateral suprasylvian visual area following neonatal visual cortex removal in cats. Journal of Neurophysiology 43, 851869.CrossRefGoogle ScholarPubMed
Spear, P.D., Tong, L. & Sawyer, C. (1983). Effects of binocular deprivation on responses of cells in cat's lateral suprasylvian visual cortex. Journal of Neurophysiology 49, 366382.CrossRefGoogle ScholarPubMed
Spear, P.D., Tong, L., McCall, M.A. & Pasternak, T. (1985). Developmentally induced loss of direction-selective neurons in the cat's lateral suprasylvian visual cortex. Developmental Brain Research 20, 281285.CrossRefGoogle Scholar
Sprague, J.M. & Meikle, T.H. (1965). The role of the superior colliculus in visually guided behaviour. Experimental Neurology 11, 115146.CrossRefGoogle Scholar
Steinmetz, M.A., Motter, B.C., Duffy, C.J. & Mountcastle, V.B. (1987). Functional properties of parietal visual neurons: radial organization of directionalities within the visual field. Journal of Neuroscience 7, 177191.CrossRefGoogle ScholarPubMed
Stryker, M.P. & Blakemore, C. (1972). Saccadic and disjunctive eye movements in cats. Vision Research 12, 20052013.CrossRefGoogle ScholarPubMed
Timney, B. (1981). Development of binocular depth perception in kittens. Investigative Ophthalmology and Visual Science 21, 493496.Google ScholarPubMed
Tong, L., Spear, P.D. & Kalil, R.E. (1987). Effects of corpus callosum section on functional compensation in the posteromedial lateral suprasylvian visual area after early visual cortex damage in cats. Journal of Comparative Neurology 256, 128136.CrossRefGoogle ScholarPubMed
Toyama, K. & Kozasa, T. (1982). Responses of Clare-Bishop neurones to three dimensional movement of a light stimulus. Vision Research 22, 571574.CrossRefGoogle ScholarPubMed
Toyama, K., Komatsu, Y., Kasai, H., Fujii, K. & Umetani, K. (1985). Responsiveness of Clare-Bishop neurons to visual cues associated with motion of a visual stimulus in three-dimensional space. Vision Research 25, 407414.CrossRefGoogle ScholarPubMed
Toyama, K., Komatsu, Y. & Kozasa, T. (1986). The responsiveness of Clare-Bishop neurons to motion cues for motion stereopsis. Neuroscience Research 4, 83109.CrossRefGoogle ScholarPubMed
Tusa, R.J., Palmer, A. & Rosenquist, A.C. (1978). The retinotopic organization of area 17 (striate cortex) in the cat. Journal of Comparative Neurology 177, 213236.CrossRefGoogle ScholarPubMed
Udin, S.B. & Keating, M.J. (1981). Plasticity in a central nervous path-way in Xenopus: anatomical changes in the isthmotectal projection after larval eye rotation. Journal of Comparative Neurology 203, 575594.CrossRefGoogle Scholar
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behaviour, ed. Ingle, D.J., Goodale, M.A. & Mansfield, R.J.W., pp. 549587. Cambridge, Massachusetts: MIT Press.Google Scholar
Van Essen, D.C. & Maunsell, J.H.R. (1983). Hierarchical organization and functional streams in the visual cortex. Trends in Neuroscience 6, 370374.CrossRefGoogle Scholar
Van Sluyters, R.C. & Levitt, F.B. (1980). Experimental strabismus in the kitten. Journal of Neurophysiology 43, 686699.CrossRefGoogle ScholarPubMed
Von Der Heydt, R., Adorjani, C.S., Hanny, P. & Baumgartner, G. (1978). Disparity sensitivity and receptive field incongruity of units in cat striate cortex. Experimental Brain Research 31, 523545.CrossRefGoogle ScholarPubMed
Von Grünau, M.W. (1979). The role of maturation and visual experience in the development of eye alignment in cats. Experimental Brain Research 37, 4147.CrossRefGoogle ScholarPubMed
Von Grünau, M.W. (1982). Comparison of the effects of induced strabismus on binocularity in area 17 and the LS area in the cat. Brain Research 246, 325329.CrossRefGoogle Scholar
Von Grünau, M.W. & Frost, B.J. (1983). Double-opponent-process mechanism underlying RF-structure of directionally specific cells of cat lateral suprasylvian visual area. Experimental Brain Research 49, 8492.CrossRefGoogle ScholarPubMed
Von Grünau, M.W. & Rauschecker, J.P. (1983). Natural strabismus in non-Siamese cats: lack of binocularity in the striate cortex. Experimental Brain Research 52, 307310.CrossRefGoogle ScholarPubMed
Von Grünau, M.W., Zumbroich, T.J. & Poulin, C. (1987). Visual receptive field properties in the posterior suprasylvian cortex of the cat: a comparison between the areas PMLS and PLLS. Vision Research 27, 343356.CrossRefGoogle Scholar
Von Noorden, G.K. (1980). Burian-von Noorden's Binocular Vision and Ocular Motility, Theory and Management of Strabismus, 2nd ed. St. Louis, Missouri: CV Mosby.Google Scholar
Wade, N.J. (1976). On interocular transfer of the movement after-effect in individuals with and without normal vision. Perception 5, 113118.CrossRefGoogle Scholar
Wolfe, J.M. & Held, R. (1979). Eye torsion and visual tilt are mediated by different binocular processes. Vision Research 19, 917920.CrossRefGoogle ScholarPubMed
Wolfe, J.M., Held, R. & Bauer, J.A. Jr, (1981). A binocular contribution to the production of optokinetic nystagmus in normal and stereoblind subjects. Vision Research 21, 587590.CrossRefGoogle Scholar
Yinon, U. (1975). Eye rotation in developing kittens: the effect on ocular dominance and receptive field organization of cortical cells. Experimental Brain Research 24, 215218.CrossRefGoogle ScholarPubMed
Yinon, U. (1976). Age dependence of the effect of squint on cells in kittens' visual cortex. Experimental Brain Research 26, 151157.CrossRefGoogle ScholarPubMed
Yinon, U., Auerbach, E., Blank, M. & Friesenhausen, J. (1975). The ocular dominance of cortical neurons in cats developed with divergent and convergent squint. Vision Research 15, 12511256.CrossRefGoogle ScholarPubMed
Zeki, S.M. & Fries, W. (1980). A function of the corpus callosum in the Siamese cat. Proceedings of the Royal Society B (London) 207, 249258.Google Scholar
Zeki, S., Watson, J.D.G., Lueck, C.J., Friston, K.J., Kennard, C. & Frackowlak, R.S.J. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience 11, 641649.CrossRefGoogle ScholarPubMed
Zihl, J., Von Cramon, D. & Mai, N. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain 106, 313340.CrossRefGoogle ScholarPubMed
Zumbroich, T.J. & Blakemore, C. (1987). Spatial and temporal selectivity in the suprasylvian visual cortex of the cat. Journal of Neuroscience 7, 482500.CrossRefGoogle ScholarPubMed