Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T06:12:24.275Z Has data issue: false hasContentIssue false

Monge: The Verriest Lecture, Lyon, July 2005

Published online by Cambridge University Press:  06 September 2006

JOHN MOLLON
Affiliation:
Experimental Psychology, Cambridge University, Cambridge, United Kingdom

Abstract

In 1789, when neither the physical basis of hue nor the retinal basis of color perception was established, the mathematician Gaspard Monte stated firmly that our color perceptions do not depend on the absolute value of the physical variable, but are influenced by the context and in particular by our estimate of the illuminant. He used this insight to explain color contrast effects and the Paradox of Monge (the desaturation of red objects seen through a red filter). He proposed that we can estimate the chromaticity of the illuminant in any scene because all surfaces reflect to us varying mixtures of (i) the body color and (ii) a specular component that represents the illuminant. He also realized that white objects have a special property: Provided that they are illuminated by a single illuminant, such objects exhibit no variation in chromaticity across their surface. Thus at least one of the unique hues exists as an external reference on which observers can agree. It is suggested that other unique hues may also have a basis in the external world.

Type
2005 VERRIEST MEDAL LECTURE
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aubry, P.-V. (1954). Monge, le savant ami de Napoléon Bonaparte, 1746–1818. Paris, Gauthier-Villars.
Bosten, J.M., Robinson, J.D., Jordan, G., & Mollon, J.D. (2005). Multidimensional scaling reveals a color dimension unique to “color-deficient” observers. Current Biology 15, R950R952.Google Scholar
Brindley, G.S. (1970). Physiology of the retina and visual pathway. London, Arnold.
Chabo, M. & Charléty, M.S. (1901). Histoire de l'enseignement secondaire dans le Rhône de 1789–1900. Annales de l'Université de Lyon, Nouvelle Série, II Droit, Lettres. 7, 1238.Google Scholar
Chevreul, M.-E. (1832). Sur l'influence que deux couleurs peuvent avoir l'une sur l'autre, quand on les voit simultanément. Mémoires de l'Académie des Sciences 11 (read in 1828).Google Scholar
Chevreul, M.-E. (1839). De la loi du contraste simultané des couleurs. Paris, Pitois-Levrault.
Chevreul, R. (1997). La vie et l'oeuvre de Michel-Eugène Chevreul. In Michel-Eugène Chevreul: Un savant, des couleurs!, eds. Roque, G., Bodo, B. & Viénot, F. Paris, Muséum national d'Histoire naturelle 3144.
Cicerone, C.M. (1990). Color appearance and the cone mosaic in trichromacy and dichromacy. In Colour Vision Deficiencies. Proceedings of the Symposium of the International Research Group on Color Vision Deficiencies, ed. Ohta, Y. Amsterdam: Kugler & Ghedini, 112.
Crosland, M. (1994). In the shadow of Lavoisier: The Annales de Chimie and the establishment of a new science. Oxford, British Society for the History of Science.
Cunthasaksiri, P., Shinoda, H., & Ikeda, M. (2004). Recognized visual space of illumination: A new account of center-surround simultaneous color contrast. Color Research and Application 29, 255260.Google Scholar
D'Zmura, M. & Lennie, P. (1986). Mechanisms of color constancy. Journal of the Optical Society of America A 3, 16621671.Google Scholar
De Launay, L. (1932a). Gaspard Monge II. Un ami de Bonaparte. Revue des Deux Mondes 10, 813839.Google Scholar
De Launay, L. (1932b). Gaspard Monge. III. L'Institut d'Égypte. Revue des Deux Mondes 11, 127155.Google Scholar
De Vries, H. (1947). The heredity of the relative numbers of red and green receptors in the human eye. Genetica 24, 199212.Google Scholar
Derrington, A.M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology (London) 357, 241265.Google Scholar
Dimmick, F.L. & Hubbard, M.R. (1939). The spectral location of psychologically unique yellow, green, and blue. American Journal of Psychology 52, 242254.Google Scholar
Donders, F.C. (1884). Equation de couleurs spectrales simples et de leurs mélanges binaires, dans les systèmes normal (polychromatique) et anormaux (dichromatiques). Archives Néerlandaises des Sciences Exactes et Naturelles 19, 301346.Google Scholar
Gentil, L. (1791). Sur la couleur qu'assedent les objects peints en rouge ou en jaune lorsqu'on les regard à travers des verres rouges ou jaunes. Annales de Chimie 10, 225254.Google Scholar
Gillispie, C.C. (1980). Science and Polity in France: the End of the Old Regime. Princeton, Princeton University Press.
Gillispie, C.C. (2004). Science and Polity in France: the Revolutionary and Napoleonic Years. Princeton, Princeton University Press.
H.F.T. (1782). Observations sur les ombres colorées. Paris, Duchesne.
Hering, E. (1878). Zur Lehre vom Lichtsinne. Sechs Mittheilungen an die Kaiserliche Akademie der Wissenschaften in Wien. Wien: Carl Gerold's Sohn.
Hurlbert, A. & Wolf, K. (2004). Color contrast: A contributory mechanism to color constancy. Progress in Brain Research 144, 147160.Google Scholar
Hurlbert, A.C. (1998). Computational models of colour constancy. In Perceptual Constancy: Why things look as they do, eds. Walsh, V. & Kulikowski, J. Cambridge: Cambridge University Press.
Jaensch, E.R. (1921). Über den Farbenkontrast und die sog. Berücksichtigung der farbigen Beleuchtung. Zeitschrift für Sinnesphysiologie 52, 165180.Google Scholar
Jenness, J.W. & Shevell, S.K. (1995). Color appearance with sparse chromatic context. Vision Research 35, 797805.Google Scholar
Jordan, G. & Mollon, J.D. (1997). Unique hues in heterozygotes for protan and deutan deficiencies. In Colour Vision Deficiencies, ed. Cavonius, C.R. Dordrecht: Kluwer.
Judd, D.B. & Wyszecki, G. (1963). Color in business, science, and industry. New York: Wiley.
Koffka, K. (1935). Principles of Gestalt Psychology. London: Kegan Paul.
Krauskopf, J., Williams, D.R., & Heeley, D.W. (1982). Cardinal directions of color space. Vision Research 22, 11231131.Google Scholar
Land, E. (1974). The retinex theory of colour vision. Proceedings of the Royal Institution of Great Britain 47, 2358.Google Scholar
Lee, H.-C. (1986). Method for computing the scene-illuminant chromaticity from specular highlights. Journal of Optical Society of America A 3, 16941699.Google Scholar
Lyon, M.F. (2002). X-chromosome inactivation and human genetic disease. Acta Paediatr. Suppl. 439, 107112.Google Scholar
MacAdam, D.L. (1935). Maximum visual efficiency of colored materials. Journal of the Optical Society of America 25, 361367.Google Scholar
MacLeod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.Google Scholar
Marat, J.P. (1780). Découvertes de M. Marat sur la Lumière; Constatées par une suite d'Expériences nouvelles Qui ont été faites un très-grand nombre de fois sous les yeux de MM. les Commissaires de l'Académie des Sciences. Paris: Jombert.
Mollon, J.D. (1989). “Tho' she kneel'd in that Place where they grew…” Journal of Experimental Biology 146, 2138.Google Scholar
Mollon, J.D. (1997). Chevreul et sa théorie de la vision dans la cadre du XIXe siècle. In Michel-Eugène Chevreul. Un savant, des couleurs!, eds. Roque, G., Bodo, B. & Viénot, F. Paris: Muséum national d'Histoire naturelle.
Mollon, J.D. (2003). The origins of modern color science. In The Science of Color, ed. Shevell, S. Washington: Optical Society of America.
Mollon, J.D. & Jordan, G. (1997). On the nature of unique hues. In John Dalton's Colour Vision Legacy, eds. Dickinson, C., Murray, I. & Carden, D. London: Taylor and Francis, pp. 38192.
Monge, G., Cassini, J., Bertholon, P., & Hassenfratz, J.-H. (1816). Encyclopédie Méthodique. Physique. Paris: Agasse.
Monge, G. (1789). Mémoire sur quelques phénomènes de la vision. Annales de Chimie 3, 131147.Google Scholar
Monge, G. (1838). Géométrie Descriptive; Suivie d'une Théorie des Ombres et de la Perspective, extraite des papiers de l'auteur. Paris: Bachelier.
Pairault, F. (2000). Gaspard Monge, le fondateur de Polytechnique. Paris: Taillandier.
Pouzet, P. (1984). Le Lycée Ampère à la Recherche de son Passé. Lyon: Pugeat.
Prevost, P. (1828). Opinion de feu Bénédict Prevost sur la Blancheur, extraite de ses Manuscrits par M. le professeur Pierre Prevost. Annales de Chimie et de Physique 37, 105111.Google Scholar
Prieur, C.-A. (1805). Considérations sur les couleurs et sur plusieurs de leurs apparences. Annales de Chimie 54, 627.Google Scholar
Roque, G., Bodo, B., & Viénot, F. (1997). Michel-Eugène Chevreul. Paris: Muséum national d'Histoire naturelle.
Shepard, R.N. (1992). The perceptual organization of colors: An adaptation to regularities of the terrestial world. In The adapted mind: Evolutionary psychology and the generation of culture, eds. Barkow, J.H., Cosmides, L. & Tooby, J. Oxford: Oxford University Press.
Shevell, S.K. (2003). Color appearance. In The science of color, ed. S.K. Shevell. Amsterdam: Elsevier.
Smithson, H.E. (2005). Sensory, computational and cognitive components of human colour constancy. Philosophical Transactions of the Royal Society B 360, 13291346.Google Scholar
von Guericke, O. (1672). Experimenta Nova (ut vocantur) Magdeburgica de Vacuo Spatio. Amstelodami, Janssonium.
Walraven, J. & Werner, J.S. (1991). The invariance of unique white; a possible implication for normalizing cone action spectra. Vision Research 31, 21852193.Google Scholar
Young, T. (1804). Experiments and calculations relative to physical optics. Philosophical Transactions of the Royal Society 94, 116.Google Scholar
Zeki, S. (1980). The representation of colours in the cerebral cortex. Nature 284, 412418.Google Scholar