Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T10:24:57.220Z Has data issue: false hasContentIssue false

The neurotensin-related hexapeptide LANT6 is found in retinal ganglion cells and in their central projections in pigeons

Published online by Cambridge University Press:  02 June 2009

Anton Reiner
Affiliation:
Department of Anatomy and Neurobiology, University of Tennessee — Memphis, Memphis

Abstract

Previous biochemical and immunohistochemical studies have shown that the neurotensin-related hexapeptide LANT6 is widespread and abundant in the avian nervous system. In the present study, immunohistochemical techniques were used to show that LANT6 is present in numerous cells of the retinal ganglion cell layer in pigeons. Consistent with the possibility that these LANT6+ retinal cells might be retinal ganglion cells, it was found that (1) the distribution of LANT6+ fibers and terminals in the central retinal target areas matched the distribution of central retinal projections; (2) the LANT6+ fibers and terminals are eliminated from retinal target areas by transection of the contralateral optic nerve; and (3) LANT6+ retinal cells in the ganglion cell layer can be retrogradely labeled by injections of fluorogold in the tectum. These results suggest that LANT6 may be utilized as a neuroactive substance by the central terminals of numerous retinal ganglion cells in birds. Similar anatomical findings have been previously reported for members of several other vertebrate groups, giving rise to the possibility that LANT6 (or its homologues in nonavians) may be a phylogenetically ubiquitous neuroactive substance used by retinal ganglion cells.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, K.D. & Reiner, A. (1990). The extensive co-occurrence of substance P and dynorphin in striatal projection neurons: An evolutionarily conserved feature of basal ganglia organization. Journal of Comparative Neurology 295, 339369.Google Scholar
Anderson, K.D. & Reiner, A. (1991). Striatonigral projection neurons: A retrograde labeling study of the percentages that contain substance P or enkephalin. Journal of Comparative Neurology 303, 658673.CrossRefGoogle ScholarPubMed
Anderson, K.J., Borja, M.A., Cotman, C.W., Moffat, J.R., Namboodiri, M.A.A. & Neale, J.H. (1987). N-Acetylaspartylglutamate identified in the rat retinal ganglion cells and their central projections in the brain. Brain Research 411, 172177.CrossRefGoogle Scholar
Beaudet, A., Burkhalter, A., Reubi, J.C. & Cuenod, M. (1981). Selective bidirectional transport of [3H]d-aspartate in the pigeon retino-tectal pathway. Neuroscience 6, 20212034.CrossRefGoogle ScholarPubMed
Brauth, S.E., Kitt, C.A., Reiner, A. & Quirion, R. (1986). Neurotensin receptors in the forebrain and midbrain of the pigeon. Journal of Comparative Neurology 253, 358373.Google Scholar
Brecha, N., Johnson, D., Bolz, J., Sharma, S., Parnavelas, J.G. & Lieberman, A.R. (1987). Substance P immunoreactive retinal ganglion cells and their central axon terminals in the rabbit. Nature 327, 155158.CrossRefGoogle ScholarPubMed
Britto, L.R.G. & Hamassaki, D.E. (1991). A subpopulation of displaced ganglion cells of the pigeon retina exhibits substance P-like immunoreactivity. Brain Research 546, 6168.CrossRefGoogle ScholarPubMed
Britto, L.R.G., Keyser, K.T., Hamassaki, D.E., Shimizu, T. & Karten, H.J. (1989). Chemically specific retinal ganglion cells collateralize to the pars ventralis of the lateral geniculate nucleus and optic tectum in the pigeon (Columba livia). Visual Neuroscience 3, 477482.CrossRefGoogle Scholar
Carraway, R.E. & Ferris, C.F. (1983). Isolation, biological and chemical characterization and synthesis of a neurotensin-related hexapeptide from chicken intestine. Journal of Biological Chemistry 258, 24752479.CrossRefGoogle ScholarPubMed
Carraway, R.E., Ruane, S.E. & Ritsema, R. (1983). Radioimmunoassay for Lys8, Asn9 neurotensin 8–13. Tissue and subcellular distribution of radioimmunoreactivity in chickens. Peptides 4, 111116.CrossRefGoogle Scholar
Caruso, D.M., Owczarzak, M.T. & Pourcho, R.G. (1990). Colocalization of substance P and GABA in retinal ganglion cells: A computer-assisted visualization. Visual Neuroscience 5, 389394.CrossRefGoogle ScholarPubMed
Ehrlich, D., Keyser, K.T. & Karten, H.J. (1987). The distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Gallus gallus). Journal of Comparative Neurology 266, 220233.CrossRefGoogle ScholarPubMed
Eldred, W.D., Li, H.B., Carraway, R.E. & Dowling, J.E. (1987). Immunocytochemical localization of LANT6-like immunoreactivity within neurons in the inner nuclear and ganglion cell layers in vertebrate retinas. Brain Research 424, 361370.CrossRefGoogle Scholar
Eldred, W.D., Isayama, T., Reiner, A. & Carraway, R.E. (1988). Ganglion cells in the turtle retina contain the neuropeptide LANT6. Journal of Neuroscience 8, 119132.Google Scholar
Gamlin, P.D.R., Reiner, A., Erichsen, J.T., Cohen, D.H. & Karten, H.J. (1984). The neural substrate for the pupillary light reflex in pigeons. Journal of Comparative Neurology 226, 523543.CrossRefGoogle Scholar
Gilbert, J.A. & Richelson, E. (1986). LANT6, xenopsin and neuromedin N stimulate cyclic GMP at neurotensin receptors European Journal of Pharmacology 129, 379383.CrossRefGoogle ScholarPubMed
Hamassaki, D.E. & Britto, L.R.G. (1990). Peptidergic displaced ganglion cells in the pigeon retina. Society for Neuroscience Abstracts 16, 1216.Google Scholar
Hokfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J.M. & Schultzberg, M. (1980). Peptidergic neurons. Nature 284, 515521.Google Scholar
Karten, H.J. & Brecha, N.C. (1982). Neuropeptides in the vertebrate retina. In Neurotransmitter Interaction and Compartmentation, ed. Bradford, H.F., pp. 719733. New York: Plenum Press.CrossRefGoogle Scholar
Karten, H.J. & Brecha, N.C. (1983). Localization of neuroactive substances in the vertebrate retina: Evidence for lamination in the inner plexiform layer. Vision Research 23, 11971205.Google Scholar
Karten, H.J. & Hodos, W. (1967). A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia). Baltimore, Maryland: Johns Hopkins Press.Google Scholar
Karten, H.J., Hodos, W., Nauta, W.J.H. & Revzin, A.M. (1973). Neural connections of the “visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). Journal of Comparative Neurology 150, 253278.Google Scholar
Kitabgi, P., Checkler, F. & Vincent, J.P. (1984). Comparison of some biological properties of neurotensin and its natural analogue LANT6. European Journal of Pharmacology 99, 357360.CrossRefGoogle ScholarPubMed
Kuljis, R.O. & Karten, H.J. (1988). Neuroactive peptides as markers of retinal ganglion cell populations that differ in anatomical organization and function. Visual Neuroscience 1, 7381.CrossRefGoogle Scholar
Reiner, A. (1987a). The distribution of proenkephalin-derived peptides in the central nervous system of turtle. Journal of Comparative Neurology 259, 6591.Google Scholar
Reiner, A. (1987b). A LANT6-like peptide that is distinct from Neuromedin N is present in striatal and pallidal neurons in the monkey basal ganglia. Brain Research 422, 186191.CrossRefGoogle Scholar
Reiner, A. & Carraway, R.E. (1985). The presence and phylogenetic conservation of a neurotensin-related hexapeptide in neurons of globus pallidus. Brain Research 341, 365371.CrossRefGoogle ScholarPubMed
Reiner, A. & Carraway, R.E. (1987). Immunohistochemical and biochemical studies on Lys8-Asn9-Neurotensin8–13(LANT6)-related peptides in the basal ganglia of pigeons, turtles and hamsters. Journal of Comparative Neurology 257, 453476.Google Scholar
Reiner, A., Erichsen, J.T., Evinger, L.C., Cabot, J.B., Fitzgerald, M.E.C. & Karten, H.J. (1991). Neurotransmitter organization of the preganglionic projection to the avian ciliary ganglion. Visual Neuroscience 6, 451472.CrossRefGoogle Scholar
Reiner, A., Karten, H.J., Gamlin, P.D.R. & Erichsen, J.T. (1983). Parasympathetic control of ocular function: Functional subdivisions and connections of the avian nucleus of Edinger-Westphal. Trends in Neuroscience 6, 140145.CrossRefGoogle Scholar
Reperant, J. (1973). Nouvelles donnés sur les projections visuelles chez le Pigeon (Columba livia). Journal für Hirnforschung 14, 151187.Google Scholar
Reperant, J. & Angaut, P. (1977). The retinotectal projections in the pigeon. An experimental optical and electron microscope study. Neuroscience 2, 119140.CrossRefGoogle ScholarPubMed
Schmued, L.C. & Fallon, J.H. (1986). Fluoro-Gold: A new fluorescent retrograde axonal tracer with numerous unique properties. Brain Research 377, 147154.Google Scholar
Stell, W., Marshak, D., Yamada, T., Brecha, N. & Karten, H.J. (1980). Peptides are in the eye of the beholder. Trends in Neuroscience 3, 292295.Google Scholar
Streit, P., Stella, M. & Cuenod, M. (1980). Kainate-induced lesion in the optic tectum: Dependency upon optic nerve afferents or glutamate. Brain Research 187, 4757.Google Scholar
Woodson, W., Reiner, A., Anderson, K.D. & Karten, H.J. (1991). The distribution, laminar location and morphology of tectal neurons projecting to the isthmo-optic nucleus in the pigeon (Columba livia): A retrograde labeling study. Journal of Comparative Neurology 305, 470488.Google Scholar