Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T19:39:27.318Z Has data issue: false hasContentIssue false

Ontogenic retinal changes in three ecologically distinct elopomorph fishes (Elopomorpha:Teleostei) correlate with light environment and behavior

Published online by Cambridge University Press:  27 April 2015

SCOTT M. TAYLOR
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, Florida Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
ELLIS R. LOEW
Affiliation:
Cornell University, Department of Biomedical Sciences, College of Veterinary Medicine, T7-020 VRT, Ithaca, New York
MICHAEL S. GRACE*
Affiliation:
Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, Florida
*
*Address correspondence to: M.S. Grace, Florida Institute of Technology, Department of Biological Sciences, 150 W. University Blvd., Melbourne, FL 32901. E-mail: mgrace@fit.edu

Abstract

Unlike the mammalian retina, the teleost fish retina undergoes persistent neurogenesis from intrinsic stem cells. In marine teleosts, most cone photoreceptor genesis occurs early in the embryonic and larval stages, and rods are added primarily during and after metamorphosis. This study demonstrates a developmental paradigm in elopomorph fishes in which retinas are rod-dominated in larvae, but undergo periods of later cone genesis. Retinal characteristics were compared at different developmental stages among three ecologically distinct elopomorph fishes—ladyfish (Elops saurus), bonefish (Albula vulpes), and speckled worm eel (Myrophis punctatus). The objectives were to improve our understanding of (1) the developmental strategy in the elopomorph retina, (2) the functional architecture of the retina as it relates to ecology, and (3) how the light environment influences photoreceptor genesis. Photoreceptor morphologies, distributions, and spectral absorption were studied at larval, juvenile, and adult stages. Premetamorphic retinas in all three species are rod-dominated, but the retinas of these species undergo dramatic change over the course of development, resulting in juvenile and adult retinal characteristics that correlate closely with ecology. Adult E. saurus has high rod densities, grouped photoreceptors, a reflective tapetum, and longer-wavelength photopigments, supporting vision in turbid, low-light conditions. Adult A. vulpes has high cone densities, low rod densities, and shorter-wavelength photopigments, supporting diurnal vision in shallow, clear water. M. punctatus loses cones during metamorphosis, develops new cones after settlement, and maintains high rod but low cone densities, supporting primarily nocturnal vision. M. punctatus secondary cone genesis occurs rapidly throughout the retina, suggesting a novel mechanism of vertebrate photoreceptor genesis. Finally, in postsettlement M. punctatus, the continuous presence or absence of visible light modulates rod distribution but does not affect secondary cone genesis, suggesting some degree of developmental plasticity influenced by the light environment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Able, K.W., Allen, D.M., Bath-Martin, G., Hare, J.A., Hoss, D.E., Marancik, K.E., Powles, P.M., Richardson, D.E., Taylor, J.C., Walsh, H.J., Warlen, S.M. & Wenner, C. (2011). Life history and habitat use of the speckled worm eel, Myrophis punctatus, along the east coast of the United States. Environmental Biology of Fishes 92, 237259.CrossRefGoogle Scholar
Bernardos, R.L., Barthel, L.K., Meyers, J.R. & Raymond, P.A. (2007). Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. Journal of Neuroscience 27, 70287040.CrossRefGoogle ScholarPubMed
Blaxter, J.H.S. & Staines, M. (1970). Pure-cone retinae and retinomotor responses in larval teleosts. Journal of the Marine Biological Association of the UK 50, 449464.CrossRefGoogle Scholar
Böhlke, E., ed. (1989). Leptocephali. Fishes of the Western North Atlantic, Part 9, Vol. 2. New Haven: Sears Foundation for Marine Research, Yale University.Google Scholar
Branchek, T. & Bremiller, R. (1984). The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure. The Journal of Comparative Neurology 224, 107115.CrossRefGoogle ScholarPubMed
Carleton, K. (2009). Cichlid fish visual systems: Mechanisms of spectral tuning. Integrative Zoology 4, 7586.CrossRefGoogle ScholarPubMed
Cheney, K.L., Newport, C., McClure, E.C. & Marshall, N.J. (2013). Colour vision and response bias in a coral reef fish. Journal of Experimental Biology 216, 29672973.Google Scholar
Cheng, C.L., Gan, K.J. & Flamarique, I.N. (2009). Thyroid hormone induces a time-dependent opsin switch in the retina of salmonid fishes. Investigative Ophthalmology & Visual Science 50, 30243032.CrossRefGoogle ScholarPubMed
Collin, S.P., Hoskins, R.V. & Partridge, J.C. (1998). Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: A case study in visual optimization. Brain, Behavior and Evolution 51, 291314.CrossRefGoogle ScholarPubMed
Cottrill, P.B., Davies, W.L., Semo, M., Bowmaker, J.K., Hunt, D.M. & Jeffery, G. (2009). Developmental dynamics of cone photoreceptors in the eel. BMC Developmental Biology 9, 71.CrossRefGoogle ScholarPubMed
Crabtree, R., Stevens, C. & Snodgrass, D. (1998). Feeding habits of bonefish, Albula vulpes, from the waters of the Florida Keys. Fishery Bulletin. 96, 754766.Google Scholar
Evans, B.I. & Fernald, R.D. (1990). Metamorphosis and fish vision. Journal of Neurobiology 21, 10371052.CrossRefGoogle ScholarPubMed
Evans, B.I. & Fernald, R.D. (1993). Retinal transformation at metamorphosis in the winter flounder (Pseudopleuronectes americanus). Visual Neuroscience 10, 10551064.CrossRefGoogle ScholarPubMed
Evans, B.I., Hárosi, F.I. & Fernald, R.D. (1993). Photoreceptor spectral absorbance in larval and adult winter flounder (Pseudopleuronectes americanus). Visual Neuroscience 10, 10651071.CrossRefGoogle ScholarPubMed
Foster, R.G., Garcia-Fernandez, J.M., Provencio, I. & DeGrip, W.J. (1993). Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis. Journal of Comparative Physiology A 172, 3345.CrossRefGoogle Scholar
Francke, M., Kreysing, M., Mack, A., Engelmann, J., Karl, A., Makarov, F., Guck, J., Kolle, M., Wolburg, H., Pusch, R., von der Emde, G., Schuster, S., Wagner, H-J. & Reichenbach, A. (2014). Grouped retinae and tapetal cups in some Teleostian fish: Occurrence, structure, and function. Progress in Retinal and Eye Research 38, 4369.CrossRefGoogle ScholarPubMed
Fu, J., Fang, W., Zou, J., Sun, M., Lathrop, K., Su, G. & Wei, X. (2013). A robust procedure for distinctively visualizing zebrafish retinal cell nuclei under bright field light microscopy. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 61, 248256.CrossRefGoogle ScholarPubMed
Fuller, R.C. & Claricoates, K.M. (2011). Rapid light-induced shifts in opsin expression: Finding new opsins, discerning mechanisms of change, and implications for visual sensitivity. Molecular Ecology 20, 33213335.CrossRefGoogle ScholarPubMed
Goldman, D. (2014). Müller glial cell reprogramming and retina regeneration. Nature Reviews Neuroscience 15, 431442.CrossRefGoogle ScholarPubMed
Helvik, J.V., Drivenes, Ø., Harboe, T. & Seo, H.C. (2001). Topography of different photoreceptor cell types in the larval retina of Atlantic halibut (Hippoglossus hippoglossus). The Journal of Experimental Biology 204, 25532559.CrossRefGoogle ScholarPubMed
Hicks, D. & Barnstable, C.J. (1987). Different rhodopsin monoclonal antibodies reveal different binding patterns on developing and adult rat retina. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 35, 13171328.CrossRefGoogle ScholarPubMed
Hitchcock, P., Ochocinska, M., Sieh, A. & Otteson, D.C. (2004). Persistent and injury-induced neurogenesis in the vertebrate retina. Progress in Retinal and Eye Research 23, 183194.CrossRefGoogle ScholarPubMed
Hitchcock, P.F. & Raymond, P.A. (2004). The teleost retina as a model for developmental and regeneration biology. Zebrafish 1, 257271.CrossRefGoogle Scholar
Hubbs, C. & Blaxter, J.H.S. (1986). Development of sense organs and behaviour of teleost larvae with special reference to feeding and predator avoidance. Transactions of the American Fisheries Society 115, 98114.2.0.CO;2>CrossRefGoogle Scholar
Humston, R., Ault, J., Larkin, M. & Luo, J. (2005). Movements and site fidelity of the bonefish Albula vulpes in the northern Florida Keys determined by acoustic telemetry. Marine Ecology Progress Series 291, 237248.CrossRefGoogle Scholar
Hunt, D.M., Dulai, K.S., Partridge, J.C., Cottrill, P. & Bowmaker, J.K. (2001). The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. The Journal of Experimental Biology 204, 33333344.CrossRefGoogle ScholarPubMed
Hunt, D.M., Fitzgibbon, J., Slobodyanyuk, S.J. & Bowmaker, J.K. (1996). Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Research 36, 12171224.CrossRefGoogle ScholarPubMed
Jerlov, N.G. (1976). Marine Optics: Elsevier, Amsterdam.Google Scholar
Jessop, B.M., Cairns, D.K., Thibault, I. & Tzeng, W.N. (2008). Life history of American eel Anguilla rostrata: New insights from otolith microchemistry. Aquatic Biology 1, 205216.CrossRefGoogle Scholar
Job, S.D. & Bellwood, D.R. (1996). Visual acuity and feeding in larval Premnas biaculeatus. Journal of Fish Biology 48, 952963.Google Scholar
Kefalov, V.J. (2012). Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches. The Journal of Biological Chemistry 287, 16351641.CrossRefGoogle ScholarPubMed
Kreysing, M., Pusch, R., Haverkate, D., Landsberger, M., Engelmann, J., Ruiter, J., Mora-Ferrer, C., Ulbricht, E., Grosche, J., Franze, K., Streif, S., Schumacher, S., Makarov, F., Kacza, J., Guck, J., Wolburg, H., Bowmaker, J.K., von der Emde, G., Schuster, S., Wagner, H-J., Reichenbach, A. & Francke, M. (2012). Photonic crystal light collectors in fish retina improve vision in turbid water. Science 336, 17001703.CrossRefGoogle ScholarPubMed
Lara, M.R. (2001). Morphology of the eye and visual acuities in the settlement-intervals of some coral reef fishes (Labridae, Scaridae). Environmental Biology of Fishes 62, 365378.CrossRefGoogle Scholar
Lenkowski, J.R. & Raymond, P.A. (2014). Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Progress in Retinal and Eye Research 40C, 94123.CrossRefGoogle Scholar
Loew, E.R. (1994). A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (Gekko gekko). Vision Research 34, 14271431.CrossRefGoogle ScholarPubMed
Losey, G.S., McFarland, W.N., Loew, E.R., Zamzow, J.P., Nelson, P.A., Marshall, N.J. & Montgomery, W.L. (2003). Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia 2003, 433454.CrossRefGoogle Scholar
MacNichol, E.F. (1986). A unifying presentation of photopigment spectra. Vision Research 26, 15431556.CrossRefGoogle ScholarPubMed
Miller, M.J. (2009). Ecology of anguilliform leptocephali: Remarkable transparent fish larvae of the ocean surface layer. Aqua-Bioscience Monographs 2, 194.CrossRefGoogle Scholar
Negishi, K. & Wagner, H.J. (1995). Differentiation of photoreceptors, glia, and neurons in the retina of the cichlid fish Aequidens pulcher; an immunocytochemical study. Developmental Brain Research 89, 87102.CrossRefGoogle ScholarPubMed
Novales Flamarique, I. (2000). The ontogeny of ultraviolet sensitivity, cone disappearance and regeneration in the sockeye salmon Oncorhynchus nerka. The Journal of Experimental Biology 203, 11611172.CrossRefGoogle ScholarPubMed
Omura, Y., Uematsu, K., Tachiki, H., Furukawa, K. & Satoh, H. (1997). Cone cells appear also in the retina of eel larvae. Fisheries Science: FS 63, 10521053.CrossRefGoogle Scholar
Otteson, D.C. & Hitchcock, P.F. (2003). Stem cells in the teleost retina: Persistent neurogenesis and injury-induced regeneration. Vision Research 43, 927936.CrossRefGoogle ScholarPubMed
Pankhurst, N.W. (1984). Retinal development in larval and juvenile European eel, Anguilla anguilla (L.). Canadian Journal of Zoology 62, 335343.CrossRefGoogle Scholar
Pankhurst, P.M., Pankhurst, N.W. & Montgomery, J.C. (1993). Comparison of behavioural and morphological measures of visual acuity during ontogeny in a teleost fish, Forsterygion varium, tripterygiidae (Forster, 1801). Brain, Behavior and Evolution 42, 178188.CrossRefGoogle Scholar
Powers, M.K., Bassi, C.J. & Raymond, P.A. (1988). Lighting conditions and retinal development in goldfish: Absolute visual sensitivity. Investigative Ophthalmology & Visual Science 29, 3743.Google ScholarPubMed
Pusch, R., Wagner, H-J., von der Emde, G. & Engelmann, J. (2013). Spatial resolution of an eye containing a grouped retina: Ganglion cell morphology and tectal physiology in the weakly electric fish Gnathonemus petersii. The Journal of Comparative Neurology 521, 40754093.CrossRefGoogle ScholarPubMed
Querubin, A., Lee, H.R., Provis, J.M. & O'Brien, K.M.B. (2009). Photoreceptor and ganglion cell topographies correlate with information convergence and high acuity regions in the adult pigeon (Columba livia) retina. The Journal of Comparative Neurology 517, 711722.CrossRefGoogle ScholarPubMed
Richardson, D.E. & Cowen, R.K. (2004). Diversity of leptocephalus larvae around the island of Barbados (West Indies): Relevance to regional distributions. Marine Ecology Progress Series 282, 271284.CrossRefGoogle Scholar
Rothermel, A. & Layer, P.G. (2001). Photoreceptor plasticity in reaggregates of embryonic chick retina: Rods depend on proximal cones and on tissue organization. The European Journal of Neuroscience 13, 949958.CrossRefGoogle ScholarPubMed
Sabbah, S., Hui, J., Hauser, F.E., Nelson, W.A. & Hawryshyn, C.W. (2012). Ontogeny in the visual system of Nile tilapia. Journal of Experimental Biology 215, 26842695.CrossRefGoogle ScholarPubMed
Schmitt, E.A. & Dowling, J.E. (1999). Early retinal development in the zebrafish, Danio rerio: Light and electron microscopic analyses. The Journal of Comparative Neurology 404, 515536.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Shand, J. (1994). Changes in retinal structure during development and settlement of the goatfish Upeneus tragula. Brain, Behavior and Evolution 43, 5160.CrossRefGoogle ScholarPubMed
Shand, J. (1997). Ontogenetic changes in retinal structure and visual acuity: A comparative study of coral-reef teleosts with differing post-settlement lifestyles. Environmental Biology of Fishes 49, 307322.CrossRefGoogle Scholar
Shand, J., Davies, W.L., Thomas, N., Balmer, L., Cowing, J.A., Pointer, M., Carvalho, L.S., Trezise, A.E.O., Collin, S.P., Beazley, L.D. & Hunt, D.M. (2008). The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. The Journal of Experimental Biology 211, 14951503.CrossRefGoogle ScholarPubMed
Shand, J., Hart, N.S., Thomas, N. & Partridge, J.C. (2002). Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri. The Journal of Experimental Biology 205, 36613667.CrossRefGoogle ScholarPubMed
Shenker, J.M., Maddox, E.D., Wishinski, E., Pearl, A., Thorrold, S.R. & Smith, N. (1993). Onshore transport of settlement-stage Nassau grouper Epinephalus striatus and other fishes in Exuma Sound, Bahamas. Marine Ecology Progress Series 98, 3143.CrossRefGoogle Scholar
Siebeck, U.E., Parker, A.N., Sprenger, D., Mäthger, L.M. & Wallis, G. (2010). A species of reef fish that uses ultraviolet patterns for covert face recognition. Current biology: CB 20, 407410.CrossRefGoogle ScholarPubMed
Smith, D.G. (1989). Introduction to Leptocephali. In Fishes of the Western North Atlantic, Part 9: Leptocephali, Vol. 2, ed. Böhlke, E.B., pp. 657668. New Haven: Sears Foundation for Marine Research.Google Scholar
Sogard, S. & Powell, G. (1989). Utilization by fishes of shallow, seagrass-covered banks in Florida Bay: 2. Diel and tidal patterns. Environmental Biology of Fishes 24, 8192.CrossRefGoogle Scholar
Somiya, H. (1980). Fishes with eye shine: Functional morphology of guanine type tapetum lucidum. Marine Ecology Progress Series 2, 926.CrossRefGoogle Scholar
Stenkamp, D.L. (2007). Neurogenesis in the fish retina. International Review of Cytology 259, 173224.CrossRefGoogle ScholarPubMed
Stenkamp, D.L. (2011). The rod photoreceptor lineage of teleost fish. Progress in Retinal and Eye Research 30, 395404.CrossRefGoogle ScholarPubMed
Taylor, S., Chen, J., Luo, J. & Hitchcock, P. (2012). Light-induced photoreceptor degeneration in the retina of the zebrafish. In Methods in Molecular Biology, Vol. 884, pp. 247254. Totowa, NJ: Humana Press.Google Scholar
Taylor, S.M. & Grace, M.S. (2005). Development of retinal architecture in the elopomorph species Megalops atlanticus, Elops saurus and Albula vulpes (Elopomorpha:Teleostei). Contributions in Marine Science 37, 129.Google Scholar
Taylor, S.M., Loew, E.R. & Grace, M.S. (2011 a). Developmental shifts in functional morphology of the retina in Atlantic tarpon, Megalops atlanticus (Elopomorpha: Teleostei) between four ecologically distinct life-history stages. Visual Neuroscience 28, 309323.CrossRefGoogle ScholarPubMed
Taylor, S.M., Loew, E.R. & Grace, M.S. (2011 b). A rod-dominated visual system in leptocephalus larvae of elopomorph fishes (Elopomorpha: Teleostei). Environmental Biology of Fishes 92, 513523.CrossRefGoogle Scholar
Temple, S.E., Veldhoen, K.M., Phelan, J.T., Veldhoen, N.J. & Hawryshyn, C.W. (2008). Ontogenetic changes in photoreceptor opsin gene expression in coho salmon (Oncorhynchus kisutch, Walbaum). Journal of Experimental Biology 211, 38793888.CrossRefGoogle ScholarPubMed
Thomas, J.L., Nelson, C.M., Luo, X., Hyde, D.R. & Thummel, R. (2012). Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss. Experimental Eye Research 97, 105116.CrossRefGoogle ScholarPubMed
van der Meer, H.J. (1994). Ontogenetic change of visual thresholds in the cichlid fish Haplochromis sauvagei. Brain, Behavior and Evolution 44, 4049.CrossRefGoogle ScholarPubMed
Vihtelic, T.S., Soverly, J.E., Kassen, S.C. & Hyde, D.R. (2006). Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Experimental Eye Research 82, 558575.CrossRefGoogle ScholarPubMed
Wagner, H.J., Fröhlich, E., Negishi, K. & Collin, S.P. (1998). The eyes of deep-sea fish II. Functional morphology of the retina. Progress in Retinal and Eye Research 17, 637685.CrossRefGoogle ScholarPubMed
Xu, H.P. & Tian, N. (2008). Glycine receptor-mediated synaptic transmission regulates the maturation of ganglion cell synaptic connectivity. The Journal of Comparative Neurology 509, 5371.CrossRefGoogle ScholarPubMed