Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T11:34:39.507Z Has data issue: false hasContentIssue false

Parvalbumin immunoreactivity of the lateral geniculate nucleus in adult rhesus monkeys after monocular eye enucleation

Published online by Cambridge University Press:  02 June 2009

Margarete Tigges
Affiliation:
Yerkes Regional Primate Research Center, and Departments of Anatomy and cell Biology, and Ophthalmology, Emory university, Atlanta
Johannes Tigges
Affiliation:
Yerkes Regional Primate Research Center, and Departments of Anatomy and cell Biology, and Ophthalmology, Emory university, Atlanta

Abstract

Immunocytochemical methods with antiserum to the calcium-binding protein parvalbumin (PV) were used to examine the effects of monocular enucleation on parvalbuminergic neurons and processes in the lateral geniculate nucleus (LGN) of adult rhesus monkeys. In the LGN of normal monkeys, numerous PV-positive neurons, including the largest neurons in the nucleus, and many PV-positive processes occur in all six laminae. After monocular enucleation, PV immunoreactivity is reduced in the neuropil of the denervated laminae compared to adjacent nondenervated and to normal laminae. PV immunoreactivity of somata in denervated laminae, however, appears to be indistinguishable from that of somata in nondenervated laminae, although neurons in the denervated laminae are smaller in size. Since LGN neurons in denervated laminae have lost their visual input, the functional role of PV in this nucleus may not relate directly to visual information processing.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braun, K., Scheich, H., Schachner, M. & Heizmann, C.W. (1985). Distribution of parvalbumin, Cytochrome oxidase activity, and 14C-2-deoxyglucose uptake in the brain of the zebra finch, II: Visual system. Cell and Tissue Research 240, 117127.CrossRefGoogle Scholar
Campbell, D.G., Woods, W.D. & Aiken, D.G. (1982). Studies concerning glaucoma caused by pigment particles in the trabecular meshwork. Investigative Ophthalmology and Visual Science (Suppl.) 22, 192.Google Scholar
Carr, P.A., Yamamoto, T., Karmy, G., Baimbridge, K.G. & Nagy, J.I. (1989). Analysis of parvalbumin and calbindin D28k-immuno- reactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic-anhydrase content. Neuroscience 33, 363371.CrossRefGoogle Scholar
Celio, M.R. (1986). Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231, 995997.CrossRefGoogle ScholarPubMed
Celio, M.R. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375475.CrossRefGoogle ScholarPubMed
Celio, M.R. & Heizmann, C.W. (1981). Calcium-binding protein parvalbumin as a neuronal marker. Nature 293, 300302.CrossRefGoogle ScholarPubMed
DeFelipe, J., Hendry, S.H.C. & Jones, E.G. (1989). Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proceedings of the National Academy of Sciences of the U.S.A. 86, 20932097.CrossRefGoogle ScholarPubMed
Demeulemeester, H., Vandesande, F., Orban, G.A., Heizmann, C.W. & Pochet, R. (1989). Calbindin D-28K and parvalbumin immunoreactivity is confined to two separate neuronal subpopulations in the cat visual cortex, whereas partial coexistence is shown in the dorsal lateral geniculate nucleus. Neuroscience Letters 99, 611.CrossRefGoogle ScholarPubMed
Hendrickson, A.E., Movshon, J.A., Boothe, R.G., Eggers, H.M., Gizzi, M.S. & Kiorpes, L. (1987). Effects of early unilateral blur on the macaque's visual system: II. Anatomical observations. Journal of Neuroscience 7, 13271339.CrossRefGoogle ScholarPubMed
Hendrickson, A.E., Ogren, M.P., Vaughn, J.E., Barber, R.P. & Wu, J.-Y. (1983). Light- and electron-microscopic immunocytochemical localization of glutamic acid decarboxylase in monkey geniculate complex: evidence for GABAergic neurons and synapses. Journal of Neuroscience 3, 12451262.CrossRefGoogle ScholarPubMed
Hendry, S.H.C., Fuchs, J., DeBlas, A.L. & Jones, E.G. (1990). Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex. Journal of Neuroscience 10, 24382450.CrossRefGoogle ScholarPubMed
Hendry, S.H.C. & Jones, E.G. (1986). Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature 320, 750753.CrossRefGoogle ScholarPubMed
Hendry, S.H.C. & Kennedy, M.B. (1986). Immunoreactivity for a calmodulin-dependent protein kinase is selectively increased in macaque striate cortex after monocular deprivation. Proceedings of the National Academy of Sciences of the U.S.A. 83, 15361540.CrossRefGoogle ScholarPubMed
Hevner, R.F. & Wong-Riley, M.T.T. (1990). Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system. Journal of Neuroscience 10, 13311340.CrossRefGoogle ScholarPubMed
Horton, J.C. (1984). Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 199253.Google ScholarPubMed
Horton, J.C. & Hedley-Whyte, E.T. (1984). Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 255272.Google ScholarPubMed
Jones, E.G. & Hendry, S.H.C. (1989). Differential calcium binding protein immunoreact ivity distinguishes classes of relay neurons in monkey thalamic nuclei. European Journal of Neuroscience 1, 222246.CrossRefGoogle Scholar
Lewis, D.A. & Lund, J.S. (1990). Heterogeneity of chandelier neurons in monkey neocortex: corticotropin-releasing factor- and parvalbumin-immunoreactive populations. Journal of Comparative Neurology 293, 599615.CrossRefGoogle ScholarPubMed
Liu, S. & Wong-Riley, M. (1990). Quantitative light- and electron-microscopic analysis of cytochrome-oxidase distribution in neurons of the lateral geniculate nucleus of the adult monkey. Visual Neuroscience 4, 269287.CrossRefGoogle ScholarPubMed
Montero, V.M. & Zempel, J. (1986). The proportion and size of GABA-immunoreactive neurons in the magnocellular and parvocellular layers of the lateral geniculate nucleus of the rhesus monkey. Experimental Brain Research 62, 215223.CrossRefGoogle ScholarPubMed
Ohm, T.G., Müller, H., Ulfig, N. & Braak, E. (1990). Glutamic-aciddecarboxylase- and parvalbumin-like-immunoreactive structures in the olfactory bulb of the human adult. Journal of Comparative Neurology 291, 18.CrossRefGoogle ScholarPubMed
Sloviter, R.S. (1989). Calcium-binding protein (Calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippo- campus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. Journal of Comparative Neurology 280, 183196.CrossRefGoogle Scholar
Stichel, C.C., Singer, W. & Heizmann, C.W. (1988). Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: evidence for coexistence with GABA. Journal of Comparative Neurology 268, 2937.CrossRefGoogle ScholarPubMed
Tigges, M. & Tigges, J. (1990). Is parvalbumin an exclusive marker for GABAergic neurons in the lateral geniculate nucleus (LGN) of rhesus monkeys? Investigative Ophthalmology and Visual Science (Suppl) 31, 395.Google Scholar
Van, Brederode J.F.M., Mulligan, K.A. & Hendrickson, A.E. (1990). Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex. Journal of Comparative Neurology 298, 122.Google Scholar