Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T05:34:41.138Z Has data issue: false hasContentIssue false

Photic responses of geniculo-hypothalamic tract neurons in the Syrian hamster

Published online by Cambridge University Press:  02 June 2009

Mary E. Harrington
Affiliation:
Department of Psychology, Dalhousie University, Halifax, Nova Scotia
Benjamin Rusak
Affiliation:
Department of Psychology, Dalhousie University, Halifax, Nova Scotia

Abstract

The putative neural pacemaker controlling circadian rhythms in mammals is contained in the suprachiasmatic nuclei of the hypothalamus. These nuclei receive a projection, the geniculo-hypothalamic tract (GHT), from neurons in the intergeniculate leaflet (IGL) and portions of the ventral lateral geniculate nucleus (vLGN) of the thalamus. We examined the responses of putative GHT neurons to diffuse illumination using extracellular electrophysiological recordings. The great majority of IGL neurons showed sustained ON responses to diffuse retinal illumination; vLGN neurons showed more variation in their responses. Discharge rates of sustained ON neurons increased monotonically as light intensity was increased and saturated over 2–3 log units of intensity changes. Many IGL neurons had binocular input, and input from the ipsilateral eye was often inhibitory. These results indicate that GHT neurons may provide information about ambient light intensity to the suprachiasmatic nuclei.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, H.E. & Ferris, C.F. (1984). Neuropeptide Y: Role in light-dark cycle entrainment of hamster circadian rhthms. Neuroscience Letters 50, 163168.CrossRefGoogle Scholar
Barlow, H.B. & Levick, W.R. (1969). Changes in the maintained discharge with adaptation level in the cat retina. Journal of Physiology 202, 699718.CrossRefGoogle ScholarPubMed
Bishop, P.O., Burke, W. & Davis, R. (1962). The identification of single units in central visual pathways. Journal of Physiology 162, 409451.CrossRefGoogle ScholarPubMed
Card, J.P. & Moore, R.Y. (1982). Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity. Journal of Comparative Neurology 206, 390396.CrossRefGoogle Scholar
Cleland, B.G. & Levick, W.R. (1974). Brisk and sluggish concentrically organized ganglion cells in the cat's retina. Journal of Physiology 240, 421456.CrossRefGoogle ScholarPubMed
Frost, D.O., So, K.-F. & Schneider, G.E. (1979). Postnatal development of retinal projections in Syrian hamsters: a study using autoradiographic and anterograde degeneration techniques. Neuroscience 4, 16491677.CrossRefGoogle ScholarPubMed
Fuller, J.H. & Schlag, J.D. (1976). Determination of the antidromic excitation by the collision test: problems of interpretation. Brain Research 112, 283298.CrossRefGoogle ScholarPubMed
Glotzbach, S.F., Cornett, C.M. & Heller, H.C. (1987). Activity of suprachiasmatic and hypothalamic neurons during sleep and wake-fulness in the rat. Brain Research 419, 279286.CrossRefGoogle Scholar
Groos, G. & Mason, R. (1978). Maintained discharge of rat suprachiasmatic neurons at different adaptation levels. Neuroscience Letters 8, 5964.CrossRefGoogle ScholarPubMed
Groos, G.A. & Mason, R. (1980). The visual properties of rat and cat suprachiasmatic neurones. Journal of Comparative Physiology 135, 349356.CrossRefGoogle Scholar
Groos, G.A. & Meijer, J.H. (1985). Effects of illumination on suprachiasmatic nucleus electrical discharge. Annals of the New York Academy of Sciences 453, 134146.CrossRefGoogle ScholarPubMed
Groos, G.A. & Rusak, B. (1982). Neurophysiological studies of the ventral lateral geniculate-suprachiasmatic nucleus projection in the rat. Society for Neuroscience Abstracts 8, 542.Google Scholar
Hada, J., Yamagata, Y. & Hayashi, Y. (1986). Visual response properties of ventral lateral geniculate nucleus cells projecting to the pretectum and superior colliculus in the cat. Brain Research 363, 165169.CrossRefGoogle Scholar
Hale, P.T. & Sefton, A.J. (1978). A comparison of the visual and electrical response properties of cells in the dorsal and ventral lateral geniculate nuclei. Brain Research 153, 591595.CrossRefGoogle ScholarPubMed
Harrington, M.E., Nance, D.M. & Rusak, B. (1985). Neuropeptide Y immunoreactivity in the hamster geniculo-suprachiasmatic tract. Brain Research Bulletin 15, 465472.CrossRefGoogle ScholarPubMed
Harrington, M.E., Nance, D.M. & Rusak, B. (1987). Double-labeling of neuropeptide Y-immunoreactive neurons which project from the geniculate to the suprachiasmatic nuclei. Brain Research 410, 275282.CrossRefGoogle Scholar
Harrington, M.E. & Rusak, B. (1986). Lesions of the thalamic inter-geniculate leaflet alter hamster circadian rhythms. Journal of Biological Rhythms 1, 309325.CrossRefGoogle Scholar
Harrington, M.E. & Rusak, B. (1988). Ablation of the geniculo-hypothalamic tract alters circadian activity rhythms of hamsters housed under constant light. Physiology and Behavior 42, 183189.CrossRefGoogle ScholarPubMed
Hayashi, Y. & Nagata, T. (1981). Receptive-field properties of rat ventral lateral geniculate cells projecting to the superior colliculus. Brain Research 226, 298303.CrossRefGoogle Scholar
Hughes, C.P. & Chi, D.Y.K. (1983). Visual function in the ventral lateral geniculate nucleus of the cat. Experimental Neurology 79, 611621.CrossRefGoogle ScholarPubMed
Kluver, H. & Barrera, E. (1953). A method for the combined staining of cells and fibers in the nervous system. Journal of Neu-ropathology and Experimental Neurology 12, 400403.CrossRefGoogle ScholarPubMed
Lincoln, D.W., Church, J. & Mason, C.A. (1975). Electrophysiolog-ical activation of suprachiasmatic neurones by changes in retinal illumination. Acta Endocrinologica (Suppl.) 199, 184.Google Scholar
Magnin, M. & Putkonen, P.T.S. (1978). A new vestibular thalamic area: electrophysiological study of the thalamic reticular nucleus and of the ventral lateral geniculate complex of the cat. Experimental Brain Research 32, 91104.CrossRefGoogle ScholarPubMed
Mason, R., Harrington, M.E. & Rusak, B. (1987). Electrophysiological responses of hamster suprachiasmatic neurones to neuropeptide Y in the hypothalamic slice preparation. Neuroscience Letters 80, 173179.CrossRefGoogle ScholarPubMed
Mathers, L.H. & Mascetti, G. (1975). Electrophysiological and morphological properties of neurons in the ventral lateral geniculate nucleus of the rabbit. Experimental Neurology 46, 506520.CrossRefGoogle ScholarPubMed
Meijer, J.H., Groos, G.A. & Rusak, B. (1986). Luminance coding in a circadian pacemaker: the suprachiasmatic nucleus of the rat and the hamster. Brain Research 382, 109118.CrossRefGoogle Scholar
Moore, R.Y. (1983). Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Federation Proceedings 42, 27832789.Google ScholarPubMed
Pickard, G.E. (1985). Bifurcating axons of retinal ganglion cells terminate in the hypothalamic suprachiasmatic nucleus and the intergeniculate leaflet of the thalamus. Neuroscience Letters 55, 211217.CrossRefGoogle ScholarPubMed
Pickard, G.E., Ralph, M.R. & Menaker, M. (1987). The intergeniculate leaflet partially mediates effects of light on circadian rhythms. Journal of Biological Rhythms 2, 3556.CrossRefGoogle ScholarPubMed
Pickard, G.E. & Silverman, A.J. (1981). Direct Retinal projections to the hypothalamus, piriform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique. Journal of Comparative Neurology 196, 155172.CrossRefGoogle Scholar
Rusak, B. & Boulos, Z. (1981). Pathways for photic entrainment of mammalian circadian rhythms. Photochemistry and Photobiology 34, 267273.CrossRefGoogle ScholarPubMed
Rusak, B. & Zucker, I. (1979). Neural regulation of circadian rhythms. Physiological Reviews 59, 449526.CrossRefGoogle ScholarPubMed
Sawaki, Y. (1977). Retinohypothalamic projection: electrophysiological evidence for the existence in female rats. Brain Research 120, 336341.CrossRefGoogle ScholarPubMed
Sawaki, Y. (1979). Suprachiasmatic nucleus neurones: excitation and inhibition mediated by the direct retino-hypothalamic projection in female rats. Experimental Brain Research 37, 127138.CrossRefGoogle ScholarPubMed
Shibata, S. & Moore, R.Y. (1988). Neuropeptide Y and vasopressin effects on rat suprachiasmatic nucleus neurons in vitro. Journal of Biological Rhythms 3, 265276.CrossRefGoogle Scholar
Sisk, C.L. & Stephan, F.K. (1982). Central visual pathways and the distribution of sleep in 24-hr and 1-hr light-dark cycles. Physiology & Behavior 29, 231239.CrossRefGoogle ScholarPubMed
Spear, P.D., Smith, D.C. & Williams, L.L. (1977). Visual receptive-field properties of single neurons in cat's ventral lateral geniculate nucleus. Journal of Neurophysiology 40, 390409.CrossRefGoogle ScholarPubMed
Stone, J. & Fukuda, Y. (1974). Properties of cat retinal ganglion cells: a comparison of W cells with X and Y cells. Journal of Neurophysiology 37, 722748.CrossRefGoogle ScholarPubMed
Sumitomo, I., Sugitani, M., Fukada, Y. & Iwama, K. (1979). Properties of cells responding to visual stimuli in the rat ventral lateral geniculate nucleus. Experimental Neurology 66, 721736.CrossRefGoogle ScholarPubMed
Thorington, L. (1985). Spectral, irradiance, and temporal aspects of natural and artificial light. Annals of the New York Academy of Sciences, 453, 2854.CrossRefGoogle ScholarPubMed