Article contents
Prolonged depolarization in rods in situ
Published online by Cambridge University Press: 02 June 2009
Abstract
Intracellular recordings were made from rods in the superfused retina of the marine toad (Bufo marinus). It was found that injection of a brief depolarizing current pulse (0.04–1 nA) evoked a distinctive, long-lasting response, here called “the prolonged depolarization.” The response appears to be regenerative, has a stereotypical waveform, is typically about 6 mV in &litude and 3 s in duration, and has a relatively long recovery period (10–60 s). As a rule, the response cannot be directly evoked by light but the current-evoked response is significantly enhanced in the presence of steady illumination. The light-evoked hyperpolarization and the depolarizing spikes of the rod are both attenuated in the presence of the prolonged depolarization. The prolonged depolarization is not an altered manifestation of the depolarizing spikes of toad rods since both can be recorded simultaneously and steady illumination suppresses the spikes while enhancing the prolonged depolarization. The response is enhanced in chloride-free superfusate and also appears to be enhanced by the use of electrodes containing chloride. The response is markedly shortened in superfusates that lack calcium or contain 1–5 mM cobalt. On this and other evidence, it is suggested that the response may be generated by the sequential action of calcium channels and calcium-activated chloride channels. Although rarely evoked by light, the prolonged depolarization of toad rods is otherwise remarkably similar to the prolonged depolarization of turtle cones. It is proposed that the prolonged depolarization, in contrast to the feedback depolarization of cones, arises from mechanisms common to both rods and cones.
Keywords
- Type
- Research Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1991
References
- 13
- Cited by