Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T10:49:09.615Z Has data issue: false hasContentIssue false

Refractive state, contrast sensitivity, and resolution in the freshwater turtle, Pseudemys scripta elegans, determined by tectal visual-evoked potentials

Published online by Cambridge University Press:  02 June 2009

D. P. M. Northmore
Affiliation:
Neuroscience Program, Department of Psychology, and School of Life Sciences, University of Delaware, Newark
A. M. Granda
Affiliation:
Neuroscience Program, Department of Psychology, and School of Life Sciences, University of Delaware, Newark

Abstract

Visual-evoked potentials (VEPs) were recorded from the surface of the optic tectum of the freshwater turtle, Pseudemys scripta elegans, in response to phase reversal of square-wave gratings of different spatial frequency and contrast. The refractive state of a group of 12 turtles in air was assessed from VEPs by placing trial lenses in front of the eye. The group mean refraction did not differ significantly from emmetropia, as compared to 4.8 diopters of hyperopia when refracted retinoscopically. The difference was explained by the retinoscopic reflex originating from the interface between vitreous humor and retina. Peak VEP amplitude was approximately linear with log grating contrast; extrapolation to zero VEP amplitude yielded contrast thresholds as low as 1%. High spatial-frequency cutoffs ranged from 4.4–9.9 cycle/deg in different animals, the highest values corresponding to the intercone spacing in the area centralis and to behavioral measures of acuity in a related species.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bass, A.H. & Northcutt, R.G. (1981). Retinal recipient nuclei in the painted turtle Chrysemys picta: An autoradiographic and HRP study. Journal of Comparative Neurology 199, 97112.CrossRefGoogle ScholarPubMed
Baylor, D.A. & Fettiplace, R. (1975). Light path and photon capture in turtle photoreceptors. Journal of Physiology (London) 248, 433464.Google Scholar
Beer, T. (1898). Die Accommodation des Auges bei den Reptilien. Pflügers Archiv für gesamte Physiologie 69, 507568.CrossRefGoogle Scholar
Bisti, S. & Maffei, L. (1974). Behavioural contrast sensitivity of the cat in various visual meridians. Journal of Physiology (London) 241, 201210.Google Scholar
Blake, R., Cool, S.J. & Crawford, M.L.J. (1974). Visual resolution in the cat. Vision Research 14, 12111217.CrossRefGoogle ScholarPubMed
Boiko, V.P. & Goncharova, N.V. (1976). Morphological and functional organization of the tectal visual center in the turtles Agrionemys horsfieldi and Emys orbicularis. Journal of Evolutionary Biochemistry and Physiology 12, 399404.Google Scholar
Bowling, D.B. (1980). Light responses of ganglion cells in the retina of the turtle. Journal of Physiology (London) 299, 173196.Google Scholar
Brown, K.T. (1969). A linear area centralis extending across the turtle retina and stabilized to the horizon by non-visual cues. Vision Research 9, 10531062.CrossRefGoogle Scholar
Campbell, F.W. & Kulikowski, J.J. (1972). The visual evoked potential as a function of contrast of a grating pattern. Journal of Physiology (London) 222, 345356.Google Scholar
Campbell, F.W. & Maffei, L. (1970). Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. Journal of Physiology (London) 207, 635652.Google Scholar
Campbell, F.W., Maffei, L. & Piccolino, M. (1973). The contrast sensitivity of the cat. Journal of Physiology (London) 229, 719731.Google Scholar
Dowling, J.E. (1987). The Retina: An Approachable Part of the Brain. Cambridge, Massachusetts: Harvard University Press.Google Scholar
Dudziak, J. (1955). Ostrość widzenia u zolwia blotnego (Emys orbicularis L.) przy patrzeniu w środowisku powietrznym i wodnym. Folia Biologica (Kraków) 3, 205228.Google Scholar
Duke-Elder, S. (1958). System of Ophthalmology. Vol. I. The Eye in Evolution. St. Louis, Missouri: C.V. Mosby.Google Scholar
Dünser, K.R., Granda, A.M. & Maxwell, J.H. (1981). Visual properties of cells in the anterior dorsal ventricular ridge of turtle. Neuroscience Letters 25, 281285.CrossRefGoogle ScholarPubMed
Fain, G.L., Granda, A.M. & Maxwell, J.H. (1977). Voltage signals of photoreceptors at visual threshold. Nature (London) 283, 181183.Google Scholar
Glickstein, M. & Millodot, M. (1970). Retinoscopy and eye size. Science 168, 605606.CrossRefGoogle ScholarPubMed
Granda, A.M. & Dvorak, C.A. (1977). Vision in turtles. In Handbook of Sensory Physiology. The Visual System in Vertebrates, ed. Crescitelli, F., pp. 451495. Heidelberg & New York: Springer-Verlag.CrossRefGoogle Scholar
Granda, A.M. & Haden, K.W. (1970). Retinal oil globule counts and distributions in two species of turtles, Pseudemys scripta elegans (Wied) and Chelonia mydas mydas (Linnaeus). Vision Research 10, 7984.CrossRefGoogle ScholarPubMed
Granda, A.M. & Sisson, D.F. (1989). Psychophysically derived visual mechanisms in turtle. I – Spectral properties. Vision Research 29, 93105.CrossRefGoogle ScholarPubMed
Hayes, W.N., Hertzler, D.R. & Hogberg, D.K. (1968). Visual responsiveness and habituation in the turtle. Journal of Comparative and Physiological Psychology 65, 331335.CrossRefGoogle ScholarPubMed
Hayes, W.N. & Saiff, E.I. (1967). Visual alarm reactions in turtles. Animal Behavior 15, 102106.CrossRefGoogle ScholarPubMed
Martin, G.R. (1983). Schematic eye models in vertebrates. In Progress in Sensory Physiology, Vol. 4, ed. Ottoson, D., pp. 4381. Berlin & New York: Springer-Verlag.CrossRefGoogle Scholar
Muntz, W.R.A. (1974). Comparative aspects in behavioural studies of vertebrate vision. In The Eye, Vol. 6, ed. Davson, H., Chap. 3, 160226. New York & London: Academic Press.Google Scholar
Muntz, W.R.A. & Northmore, D.P.M. (1968). Background light, temperature, and visual noise in the turtle. Vision Research 8, 787800.CrossRefGoogle ScholarPubMed
Muntz, W.R.A. & Sokol, S. (1967). Psychophysical thresholds to different wavelengths in light adapted turtles. Vision Research 7, 729741.CrossRefGoogle ScholarPubMed
Nakayama, K. & Mackeben, M. (1982). Steady state visual evoked potentials in the alert primate. Vision Research 22, 12611271.CrossRefGoogle ScholarPubMed
Northmore, D.P.M. & Granda, A.M. (1991). Ocular dimensions and schematic eyes of freshwater and sea turtles. Visual Neuroscience 7, 627635.CrossRefGoogle ScholarPubMed
Peterson, E.H. & Ulinski, P.S. (1979). Quantitative studies of retinal ganglion cells in a turtle, Pseudemys scripta elegans. I. Number and distribution of ganglion cells. Journal of Comparative Neurology 186, 1742.CrossRefGoogle Scholar
Regan, D. (1989). Human Brain Electrophysiology. Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. New York, Amsterdam & London: Elsevier.Google Scholar
Robbins, D.O. (1972). Coding of intensity and wavelength in optic tectal cells of the turtle. Brain Behavior and Evolution 5, 124142.CrossRefGoogle ScholarPubMed
Sisson, D.F. & Granda, A.M. (1989). Psychophysically derived visual mechanisms in turtle. II – Spatial properties. Vision Research 29, 107114.CrossRefGoogle ScholarPubMed
Sokol, S. & Moskowitz, A. (1981). Effect of retinal blur on the peak latency of the pattern evoked potential. Vision Research 21, 12791286.CrossRefGoogle ScholarPubMed
Uhlrich, D.J., Essock, E.A. & Lehmkuhle, S. (1981). Cross-species correspondence of spatial contrast sensitivity functions. Behavioral Brain Research 2, 291299.CrossRefGoogle ScholarPubMed
Ulinski, P.S. (1980). Functional morphology of the vertebrate visual system: An essay on the evolution of complex systems. American Zoologist 20, 229246.CrossRefGoogle Scholar
Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, Michigan: The Cranbrook Institute of Science.Google Scholar