Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:11:43.478Z Has data issue: false hasContentIssue false

Regeneration of the dopamine-cell mosaic in the retina of the goldfish

Published online by Cambridge University Press:  02 June 2009

Peter F. Hitchcock
Affiliation:
W. K. Kellogg Eye Center, Departments of Ophthalmology and Anatomy and Cell Biology, School of Medicine, University of Michigan, Ann Arbor
Jeff T. Vanderyt
Affiliation:
W. K. Kellogg Eye Center, Departments of Ophthalmology and Anatomy and Cell Biology, School of Medicine, University of Michigan, Ann Arbor

Abstract

A fundamental anatomical feature of retinal neurons is that they form planar mosaics. Each mosaic can be described by its density, pattern, and regularity (non-randomness). As part of ongoing studies to quantitatively describe the anatomy of regenerated retina in the goldfish, we determined the planimetric density and regularity of the mosaic of dopaminergic interplexiform cells in patches of regenerated retina and compared this to the mosaic generated de novo. In addition, we selectively ablated dopaminergic neurons with the neurotoxin 6–hydroxydopamine (6–OHDA) before inducing local regeneration and determined whether or not the absence of the extant dopaminergic neurons modulated the planimetric density or number of regenerated ones. The results showed that dopaminergic neurons are regenerated at higher planimetric densities and in less orderly arrays than normal. Furthermore, there was no statistical difference in the density or number of regenerated cells in normal retinas and retinas treated with 6–OHDA.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.C. (1977). Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2, 141145.CrossRefGoogle ScholarPubMed
Adler, R. & Hatlee, M.C. (1989). Plasticity and differentiation of embryonic retinal cells after terminal mitosis. Science 243, 391393.CrossRefGoogle ScholarPubMed
Altshuler, D. & Cepko, C. (1992). A temporally regulated, diffusible activity is required for rod photoreceptor development in vitro. Development 114, 947957.CrossRefGoogle ScholarPubMed
Baldridge, W.H. & Ball, A.K. (1991). Background illumination reduces horizontal cell receptive-field size in both normal and 6–hydroxydopamine-lesioned goldfish retinas. Visual Neuroscience 7, 441450.CrossRefGoogle ScholarPubMed
Barthel, L.K. & Raymond, P.A. (1990). Improved method for obtaining 3 μm cryosections for immunocytochemistry. Journal of Histochemistry and Cytochemistry 38, 13831388.CrossRefGoogle Scholar
Braisted, J.E. & Raymond, P.A. (1992). Regeneration of dopaminergic neurons in goldfish retina. Development 114, 913919.CrossRefGoogle ScholarPubMed
Cameron, D.A. & Easter, S.S. Jr (1993). The cone photoreceptor mosaic of the green sunfish, Lepomis cyanellus. Visual Neuroscience 10, 375384.CrossRefGoogle ScholarPubMed
Clark, P.J. & Evans, F.C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445453.CrossRefGoogle Scholar
Cohen, J.L. & Dowling, J.E. (1983). The role of the retinal interplexiform cell: Effects of 6–hydroxydopamine on the spatial properties of carp horizontal cells. Brain Research 264, 307310.CrossRefGoogle ScholarPubMed
Dowling, J.E. (1987). The Retina. Cambridge, Massachusetts: The Belknap Press of Harvard University Press.Google Scholar
Dowling, J.E. & Ehringer, B. (1978). The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina. Proceedings of the Royal Society B (London) 201, 726.Google Scholar
Eberhardt, L.L. (1967). Some developments in “distance sampling.” Biometrics 23, 207216.CrossRefGoogle ScholarPubMed
Hitchcock, P.F. (1989). Exclusionary dendritic interactions in the retina of the goldfish. Development 106, 589598.CrossRefGoogle ScholarPubMed
Hitchcock, P.F. & Vanderyt, J.T. (1992). Regeneration of the dopamine-cell mosaic in the retina of the goldfish. Neuroscience Abstracts 18, 489.Google Scholar
Hitchcock, P.F. & Easter, S.S. Jr (1986). Retinal ganglion cells in goldfish: A qualitative classification into four morphological types, and a quantitative study of the development of one of them. Journal of Neuroscience 6, 10371050.CrossRefGoogle Scholar
Hitchcock, P.F., Lindsey, Myhr K.J., Easter, S.S. Jr, Mangione-Smith, R. & DWYER-Jones, D. (1992). Local regeneration in the retina of the goldfish. Journal of Neurobiology 23, 187203.CrossRefGoogle ScholarPubMed
Hitchcock, P.F. & Raymond, P.A. (1992). Retinal regeneration. Trends in Neuroscience 15, 103108.CrossRefGoogle ScholarPubMed
Krauth, J. (1983). The interpretation of significance tests for independent and dependent samples. Journal of Neuroscience Methods 9, 269281.CrossRefGoogle ScholarPubMed
Levine, R.L. (1981). La Regeneresence de la Retinae Chiz Xenopus laevis. Revue Canadienne De Biologie 40, 1927 (Levine’s translation).Google Scholar
Lombardo, F. (1968). La rigenerazione della retina negli adulti di um teleosteo. Accademia Lincei-Rendiconti Scienze Fisicali Matematiche e Naturale 45, 631635.Google Scholar
Lombardo, F. (1972). Andamento e localizzazione delle mitosi durante le rigenerazione della retina di un teleosteo adulto. Accademia Lincei-Rendiconti Scienze Fisicali Matematiche e Naturale 53, 323327.Google Scholar
Maier, W. & Wolburg, H. (1979). Regeneration of the goldfish retina after exposure to different doses of ouabain. Cell Tissue Research 209, 99118.Google Scholar
McAvoy, J.W. & Chamberlain, C.G. (1990). Growth factors in the eye. Progress in Growth Factor Research 2, 2943.CrossRefGoogle ScholarPubMed
Mensinger, A.F. & Powers, M.K. (1993). Visual function following surgical removal retinal tissue. Investigative Ophthalmology and Visual Science (Suppl.) 34, 1176.Google Scholar
Negishi, K., Teranishi, T. & Kato, S. (1982). New dopaminergic and indoleamine-accumulating cells in the growth zone of goldfish retinas after neurotoxic destruction. Science 216, 747749.CrossRefGoogle ScholarPubMed
Negishi, K., Teranishi, T., Kato, S. & Nakamura, Y. (1987). Paradoxical induction of dopaminergic cells following intravitreal injection of high doses of 6–hydroxydopamine in juvenile carp retina. Developmental Brain Research 37, 6789.CrossRefGoogle Scholar
Negishi, K., Teranishi, T. & Kato, S. (1990). The dopamine system of the teleost fish retina. Progress in Retinal Research 9, 148.CrossRefGoogle Scholar
Raymond, P.A., Reifler, M.J. & Rivlin, P.K. (1988). Regeneration of goldfish retina: Rod precursors are a likely source of regenerated cells. Journal of Neurobiology 19, 431463.CrossRefGoogle ScholarPubMed
Reh, T.A. (1987). Cell-specific regulation of neuronal production in the larval frog retina. Journal of Neuroscience 7, 33173324.CrossRefGoogle ScholarPubMed
Reh, T.A. & Tully, T.T. (1986). Regulation of tyrosine hydroxylase-containing amacrine cell number in larval frog retina. Developmental Biology 114, 463469.CrossRefGoogle ScholarPubMed
Reh, T.A. (1992). Cellular interactions determine neuronal phenotypes in rodent retinal cultures. Journal of Neurobiology 23, 10671083.CrossRefGoogle ScholarPubMed
Repka, A. & Adler, R. (1992). Differentiation of retinal precursor cells born in vitro. Developmental Biology 153, 242249.CrossRefGoogle ScholarPubMed
Reyer, R.W. (1977). The amphibian eye: Development and regeneration. In Handbook of Sensory Physiology, Vol. 7/5, The Visual System, ed. Cresticelli, F., pp. 309390. New York: Springer-Verlag.Google Scholar
Sarthy, P.V. & Lam, D.M.-K. (1983). Retinal regeneration in the adult newt, Notophthalmus viridescens: Appearance of neurotransmitter synthesis and the electroretinogram. Developmental Brain Research 6, 99105.CrossRefGoogle Scholar
Turner, D.L. & Cepko, C.L. (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131136.CrossRefGoogle ScholarPubMed
Versaux-Botteri, C. & Nguyen-Legros, J. (1986). An improved method for tyrosine hydroxylase immunolabeling of catecholamine cells in wholemounted rat retina. Journal of Histochemistry and Cytochemistry 34, 743747.CrossRefGoogle Scholar
WÄSsle, H. & Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society of London. Series B: Biological Sciences 200, 441461.Google ScholarPubMed
Watanabe, T. & Raff, M.C. (1992). Diffusible rod-promoting signals in the developing rat retina. Development 114, 899906.CrossRefGoogle ScholarPubMed