Article contents
Responses of rod bipolar cells isolated from dogfish retinal slices to concentration-jumps of glutamate
Published online by Cambridge University Press: 02 June 2009
Abstract
Rod on-bipolar cell light responses are mediated by a class of metabotropic glutamate receptor which is coupled via a G-protein to the control of a cGMP cascade, with cGMP acting to open cation channels, whilst off-bipolar cells possess ionotropic glutamate receptors. Whole-cell voltage-clamp recordings were obtained from on- and off-bipolar cells of dark-adapted dogfish retinal slices, identified by their light responses. Isolated cells were exposed to concentration-jumps of glutamate. At negative voltage-clamp potentials, on-bipolar cells responded to glutamate with outward currents with a mean delay of 10.8 ms, whilst off-bipolar cells responded with inward currents without any delay. Neither cell type showed desensitization to applied steps of glutamate. The dose-response relation for on-bipolar cells showed no gradual saturation, but increased linearly with a sharp cutoff above 200 μM glutamate. This dose-response relation could be fitted with a theoretical expression assuming Michaelis-Menten kinetics for the action of glutamate on receptors and a linear relation between the concentration of receptors bound to glutamate and the fall in cGMP this induces. The dose-response relation of off-bipolar cells showed saturation with a limiting slope of 2 at low glutamate concentrations, suggesting that two molecules of glutamate are required to open each channel by a cooperative mechanism. The glutamate receptor coupled cGMP cascade of rod on-bipolar cells can account for high synaptic voltage gain.
- Type
- Research Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1994
References
- 35
- Cited by