Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T06:33:10.915Z Has data issue: false hasContentIssue false

Responses to direction and transparent motion stimuli in area FST of the macaque

Published online by Cambridge University Press:  28 April 2008

ARI ROSENBERG*
Affiliation:
Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
PASCAL WALLISCH
Affiliation:
Department of Psychology, University of Chicago, Chicago, Illinois
DAVID C. BRADLEY
Affiliation:
Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois Department of Psychology, University of Chicago, Chicago, Illinois
*
Address correspondence and reprint requests to: Ari Rosenberg, 947 East 58th St., MC0926, Committee on Computational Neuroscience, University of Chicago, Chicago, IL, 60637. E-mail: arirose@uchicago.edu

Abstract

Motion transparency occurs when multiple object velocities are present within a local region of retinotopic space. Transparent signals can carry information useful in the segmentation of moving objects and in the extraction of three-dimensional structure from relative motion cues. However, the physiological substrate underlying the detection of motion transparency is poorly understood. Direction tuned neurons in area MT are suppressed by transparent stimuli, suggesting that other motion sensitive areas may be needed to represent this signal robustly. Recent neuroimaging evidence implicated two such areas in the macaque superior temporal sulcus. We studied one of these, FST, with electrophysiological methods and found that a large fraction of the neurons responded well to two opposite directions of motion and to transparent stimuli containing those same directions. A linear combination of MT-like responses qualitatively reproduces this behavior and predicts that FST neurons can be tuned for transparent motion containing specific direction and depth components. We suggest that FST plays a role in motion segmentation based on transparent signals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology 52, 11061130.Google Scholar
Born, R.T. & Bradley, D.C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience 28, 157189.Google Scholar
Bradley, D.C., Chang, G.C. & Andersen, R.A. (1998). Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature 392, 714717.Google Scholar
Bradley, D.C., Qian, N. & Andersen, R.A. (1995). Integration of motion and stereopsis in middle temporal cortical area of macaques. Nature 373, 609611.Google Scholar
Britten, K.H. & Newsome, W.T. (1998). Tuning bandwidths for near-threshold stimuli in area MT. Journal of Neurophysiology 80, 762770.Google Scholar
Curran, W., Hibbard, P.B. & Johnston, A. (2007). The visual processing of motion-defined transparency. Proceedings of the Royal Society B 274, 10491056.Google Scholar
DeAngelis, G.C. & Uka, T. (2003). Coding of horizontal disparity and velocity by MT neurons in the alert macaque. Journal of Neurophysiology 89, 10941111.Google Scholar
Desimone, R. & Ungerleider, L.G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaque. Journal of Comparative Neurology 248, 164189.Google Scholar
Dodd, J.V., Krug, K., Cumming, B.G. & Parker, A.J. (2001). Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. Journal of Neuroscience 21, 48094821.Google Scholar
Eifuku, S. & Wurtz, R. (1999). Response to motion in extrastriate area MSTl: Disparity sensitivity. Journal of Neurophysiology 82, 24622475.Google Scholar
Evarts, E.V. (1966). Methods for recording activity of individual neurons in moving animals. In Methods in Medical Research, ed. Rushmer, R.F., pp. 241250. Chicago, IL: Year Book Medical Publishers.Google Scholar
Gattass, R. & Gross, C.G. (1981). Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Neurophysiology 46, 621638.Google Scholar
Giese, M.A. & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience 4, 179192.Google Scholar
Greenwood, J.A. & Edwards, M. (2006). Pushing the limits of transparent-motion detection with binocular disparity. Vision Research 46, 26152624.Google Scholar
Grzywacz, N.M. & Yuille, A.L. (1990). A model for the estimate of local image velocity by cells in the visual cortex. Proceedings of the Royal Society of London A 239, 129161.Google Scholar
Heeger, D. (1987). Model for the extraction of image flow. Journal of the Optical Society of America A 4, 14551471.Google Scholar
Hildreth, E.C. (1984). Computations underlying the measurement of visual motion. Artificial Intelligence 23, 309355.Google Scholar
Judge, S., Richmond, B. & Chu, F. (1980). Implementation of magnetic search coils for measurement of eye position: An improved method. Vision Research 20, 535538.Google Scholar
Komatsu, H. & Wurtz, R.H. (1988). Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology 60, 580603.Google Scholar
Krekelberg, B., van Wezel, R.J.A. & Albright, T.D. (2006). Interactions between speed and contrast tuning in the middle temporal area: Implications for the neural code for speed. Journal of Neuroscience 26, 89888998.Google Scholar
Maunsell, J.H. & Van Essen, D.C. (1983a). Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology 49, 11271147.Google Scholar
Maunsell, J.H. & Van Essen, D.C. (1983b). Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. Journal of Neurophysiology 49, 11481167.Google Scholar
Mysore, S.G., Raiguel, S.E., Todd, J.T., Vogels, R. & Orban, G.A. (2007). Neurons in macaque area FST are selective for motion defined depth structure. Society for Neuroscience Abstract 716.6.Google Scholar
Nelissen, K., Vanduffel, W. & Orban, G.A. (2006). Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus. Journal of Neuroscience 26, 59295947.Google Scholar
Oram, M.W., Perrett, D.I. & Hietanen, J.K. (1993). Directional tuning of motion-sensitive cells in the anterior superior temporal polysensory area of the macaque. Experimental Brain Research 97, 274294.Google Scholar
Poggio, T., Yang, N.V. & Torre, V. (1988). Optical flow: Computational properties and networks, biological and analog. In The computing neuron, ed. Durban, R., Miall, C. & Mitcheson, G., pp. 355370. Wokingham, UK: Addison-Wesley.Google Scholar
Pouget, A. & Sejnowski, T. (1997). Spatial transformations in the parietal cortex using basis functions. Journal of Cognitive Neuroscience 9, 222237Google Scholar
Qian, N. & Andersen, R.A. (1994). Transparent motion perception as detection of unbalanced motion signals: II. Physiology. Journal of Neuroscience 14, 73677380.Google Scholar
Qian, N. & Andersen, R.A. (1995). V1 responses to transparent and nontransparent motions. Experimental Brain Research 103, 4150.CrossRefGoogle Scholar
Qian, N., Andersen, R.A. & Adelson, E.H. (1994). Transparent motion perception as detection of unbalanced motion signals: I. Psychophysics. Journal of Neuroscience 14, 73577366.Google Scholar
Recanzone, G.H., Wurtz, R.H. & Schwarz, U. (1997). Responses of MT and MST neurons to one and two moving objects in the receptive field. Journal of Neurophysiology 78, 29042915.Google Scholar
Rosenberg, A., Wallisch, P. & Bradley, D.C. (2007). Opponent motion tuning of neurons in area FST of the macaque. BMC Neuroscience 8, P152.Google Scholar
Roy, J.P., Komatsu, H. & Wurtz, R.H. (1992). Disparity sensitivity of neurons in monkey extrastriate area MST. Journal of Neuroscience 12, 24782492.Google Scholar
Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y. & Iwai, E. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. Journal of Neuroscience 6, 145157.Google Scholar
Sereno, M.E., Trinath, T., Augath, M. & Logothetis, N.K. (2002). Three-dimensional shape representation in monkey cortex. Neuron 33, 635652.Google Scholar
Snowden, R.J., Erickson, R.G., Treue, S. & Andersen, R.A. (1991). The response of area MT and V1 neurons to transparent motion. Journal of Neuroscience 11, 27682785.Google Scholar
Snowden, R.J., Treue, S. & Andersen, R.A. (1992). The response of neurons in area V1 and MT of the alert rhesus monkey to moving random dot patterns. Experimental Brain Research 88, 389400.Google Scholar
Thompson, P. (1982). Perceived rate of movement depends on contrast. Vision Research 22, 377380.Google Scholar
Treue, S., Hol, K. & Rauber, H.J. (2000). Seeing multiple directions of motion–physiology and psychophysics. Nature Neuroscience 3, 270276.Google Scholar
Ungerleider, L.G. & Desimone, R. (1986). Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology 248, 190222.Google Scholar
Vanduffel, W., Fize, D., Peuskens, H., Denys, K., Sunaert, S., Todd, J.T. & Orban, G.A. (2002). Extracting 3D from motion: Differences in human and monkey intraparietal cortex. Science 298, 413415.Google Scholar
Wallach, H. & O'Connell, D.N. (1953). The kinetic depth effect. Journal of Experimental Psychology 45, 205217.Google Scholar