Published online by Cambridge University Press: 02 June 2009
Sensory representations in the brain exhibit topographic variations in magnification. These variations have been thought to reflect regional differences in the density of innervation at the sensory receptor surface. In the primate visual cortex, for example, local magnification factors have been reported to be proportional to the corresponding densities of retinal ganglion cells. We sought to learn whether this principle also operates in a second major retinofugal pathway—the projection to the superior colliculus. In cats, we first used retrograde transport to determine the retinal distributions of the ganglion cells that project to the colliculus. Then, we compared the numbers of colliculopetal ganglion cells in selected retinal sectors to the areas of the corresponding collicular representations. Collicular areal magnification was not simply proportional to the density of afferent ganglion cells, being instead at least 5-fold greater than expected in the representation of the central visual field. These data imply that incoming retinal afferents are more widely spaced in the central regions of the tectal map than in the map's periphery. Such variations in afferent density appear to play as large a role as the distribution of ganglion cells in determining the metric of the collicular map.