Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T14:08:44.750Z Has data issue: false hasContentIssue false

Saccade-based termination responses in macaque V1 and visual perception

Published online by Cambridge University Press:  24 July 2018

JAMES E. NIEMEYER
Affiliation:
Department of Neuroscience, Brown University, Providence, Rhode Island The Laboratory of Neural Dynamics and Cognition, The Rockefeller University, New York, New York
MICHAEL A. PARADISO*
Affiliation:
Department of Neuroscience, Brown University, Providence, Rhode Island
*
*Address correspondence to: Michael A. Paradiso, Department of Neuroscience, Brown University, Box GL-N, Providence, RI 02912. E-mail: Michael_Paradiso@brown.edu

Abstract

Neurons in visual areas of the brain are generally characterized by the increase in firing rate that occurs when a stimulus is flashed on in the receptive field (RF). However, neurons also increase their firing rate when a stimulus is turned off. These “termination responses” or “after-discharges” that occur with flashed stimuli have been observed in area V1 and they may be important for vision as stimulus terminations have been shown to influence visual perception. The goal of the present study was to determine the strength of termination responses in the more natural situation in which eye movements move a stimulus out of an RF. We find that termination responses do occur in macaque V1 when termination results from a saccadic eye movement, but they are smaller in amplitude compared to flashed-off stimuli. Furthermore, there are termination responses even in the absence of visual stimulation. These findings demonstrate that termination responses are a component of naturalistic vision. They appear to be based on both visual and nonvisual signals in visual cortex. We speculate that the weakening of termination responses might be a neural correlate of saccadic suppression, the loss of perceptual sensitivity around the time of saccades.

Type
Brief Communication
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J., Miezin, F. & McGuinness, E. (1985). Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 8, 407430.CrossRefGoogle ScholarPubMed
Asaad, W.F., Santhanam, N., McClellan, S. & Freedman, D.J. (2013). High-performance execution of psychophysical tasks with complex visual stimuli in MATLAB. Journal of Neurophysiology 109, 249260.CrossRefGoogle ScholarPubMed
Cai, R.H., Pouget, A., Schlag-Rey, M. & Schlag, J. (1997). Perceived geometrical relationships affected by eye-movement signals. Nature 386, 601604.CrossRefGoogle ScholarPubMed
Campbell, F.W. & Wurtz, R.H. (1978). Saccadic omission: Why we do not see a grey-out during a saccadic eye movement. Vision Research 18, 12971303.CrossRefGoogle ScholarPubMed
Dodge, R. (1900). Visual perception during eye movement. Psychological Review 7, 454465.CrossRefGoogle Scholar
Duysens, J., Orban, G.A., Cremieux, J. & Maes, H. (1985). Visual cortical correlates of visible persistence. Vision Research 25, 171178.CrossRefGoogle ScholarPubMed
Duysens, J., Schaafsma, S.J. & Orban, G.A. (1996). Cortical off response tuning for stimulus duration. Vision Research 36, 32433251.CrossRefGoogle ScholarPubMed
Eriksson, D., Tompa, T. & Roland, P.E. (2008). Non-linear population firing rates and voltage sensitive dye signals in visual areas 17 and 18 to short duration stimuli. PLoS One 3, e2673.CrossRefGoogle ScholarPubMed
Gawne, T.J. & Martin, J.M. (2002). Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. Journal of Neurophysiology 88, 21782186.CrossRefGoogle ScholarPubMed
Holt, E.B. (1903). Eye-movement and central anaesthesia. Psychological Review 4, 345.Google Scholar
Ito, J., Maldonado, P., Singer, W. & Grun, S. (2011). Saccade-related modulations of neuronal excitability support synchrony of visually elicited spikes. Cerebral Cortex 21, 24822497.CrossRefGoogle ScholarPubMed
Jeannerod, M., Kennedy, H. & Magnin, M. (1979). Corollary discharge: Its possible implications in visual and oculomotor interactions. Neuropsychologia 17, 241258.CrossRefGoogle ScholarPubMed
Li, X.J., Jiang, Z. & Wang, Y. (2012). The temporal responses of neurons in the primary visual cortex to transient stimuli. Progress in Biochemistry and Biophysics 39, 11901196.CrossRefGoogle Scholar
Liang, Z., Shen, W., Sun, C. & Shou, T. (2008). Comparative study on the offset responses of simple cells and complex cells in the primary visual cortex of the cat. Neuroscience 156, 365373.CrossRefGoogle ScholarPubMed
Macknik, S.L. & Livingstone, M.S. (1998). Neuronal correlates of visibility and invisibility in the primate visual system. Nature Neuroscience 1, 144149.CrossRefGoogle ScholarPubMed
Macknik, S.L. & Martinez-Conde, S. (2004). The spatial and temporal effects of lateral inhibitory networks and their relevance to the visibility of spatiotemporal edges. Neurocomputing 58, 775782.CrossRefGoogle Scholar
Macknik, S.L. & Martinez-Conde, S. (2008). The role of feedback in visual masking and visual processing. Advances in Cognitive Psychology 3, 125152.CrossRefGoogle ScholarPubMed
Martinez-Conde, S., Macknik, S.L. & Hubel, D.H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proc Natl Acad Sci U S A 99, 1392013925.CrossRefGoogle ScholarPubMed
McFarland, J.M., Bondy, A.G., Saunders, R.C., Cumming, B.G. & Butts, D.A. (2015). Saccadic modulation of stimulus processing in primary visual cortex. Nature Communications 6, 8110.CrossRefGoogle ScholarPubMed
McIlwain, J.T. (1964). Receptive fields of optic tract axons and lateral geniculate cells: Peripheral extent and barbiturate sensitivity. Journal of Neurophysiology 27, 11541173.CrossRefGoogle ScholarPubMed
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex. Journal of Physiology 283, 101120.CrossRefGoogle ScholarPubMed
Niemeyer, J.E. & Paradiso, M.A. (2016). Contrast sensitivity, V1 neural activity, and natural vision. Journal of Neurophysiology. doi: 10.1152/jn.00635.2016.Google ScholarPubMed
Price, N.S., Crowder, N.A., Hietanen, M.A. & Ibbotson, M.R. (2006). Neurons in V1, V2, and PMLS of cat cortex are speed tuned but not acceleration tuned: The influence of motion adaptation. Journal of Neurophysiology 95, 660673.CrossRefGoogle Scholar
Purpura, K.P., Kalik, S.F. & Schiff, N.D. (2003). Analysis of perisaccadic field potentials in the occipitotemporal pathway during active vision. Journal of Neurophysiology 90, 34553478.CrossRefGoogle ScholarPubMed
Rajkai, C., Lakatos, P., Chen, C.M., Pincze, Z., Karmos, G. & Schroeder, C.E. (2008). Transient cortical excitation at the onset of visual fixation. Cerebral Cortex 18, 200209.CrossRefGoogle ScholarPubMed
Ross, J., Morrone, M.C. & Burr, D.C. (1997). Compression of visual space before saccades. Nature 386, 598601.CrossRefGoogle ScholarPubMed
Ross, J., Morrone, M.C., Goldberg, M.E. & Burr, D.C. (2001). Changes in visual perception at the time of saccades. Trends in Neurosciences 24, 113121.CrossRefGoogle ScholarPubMed
Rossi, A.F. & Paradiso, M.A. (1999). Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex. Journal of Neuroscience 19, 61456156.CrossRefGoogle ScholarPubMed
Ruiz, O. & Paradiso, M.A. (2012). Macaque V1 representations in natural and reduced visual contexts: Spatial and temporal properties and influence of saccadic eye movements. Journal of Neurophysiology 108, 324333.CrossRefGoogle ScholarPubMed
Tolhurst, D.J. & Movshon, J.A. (1975). Spatial and temporal contrast sensitivity of striate cortical neurones. Nature 257, 674675.CrossRefGoogle ScholarPubMed
Troncoso, X.G., McCamy, M.B., Jazi, A.N., Cui, J., Otero-Millan, J., Macknik, S.L., Costela, F.M. & Martinez-Conde, S. (2015). V1 neurons respond differently to object motion versus motion from eye movements. Nature Communications 6, 8114.CrossRefGoogle ScholarPubMed
Volkmann, F.C. (1986). Human visual suppression. Vision Research 26, 14011416.CrossRefGoogle ScholarPubMed
Wurtz, R.H. (2008). Neuronal mechanisms of visual stability. Vision Research 48, 20702089.CrossRefGoogle ScholarPubMed