Article contents
Sclerally directed processes of dopaminergic interplexiform cells reach the outer nuclear layer in rat and monkey retina
Published online by Cambridge University Press: 02 June 2009
Abstract
Tyrosine hydroxylase-immunolabeled wholemounts and sections of rat and monkey retina were observed at both the light- and electron-microscopic level. Small processes derived from sclerally directed processes of dopaminergic interplexiform cells were observed ascending to the outer nuclear layer where they were distributed between photoreceptor cells. A role in the regulation of disc shedding and/or melatonin biosynthesis is proposed for dopamine released at this level.
- Type
- Research Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1990
References
Boycott, B.B. (1988). Horizontal cells of mammalian retinae. Neuroscience Research (Suppl.) 8, 97–112.Google ScholarPubMed
Brann, M.R. & Young, W., III. (1986). Dopamine receptors are located on rods in bovine retina. Neuroscience Letters 69, 221–226.CrossRefGoogle ScholarPubMed
Cohen, A.I. (1989). Mouse photoreceptors contain D2 dopamine receptors that inhibit adenylate cyclase. Investigative Ophthalmology and Visual Science (Suppl.) 30, 319.Google Scholar
Dacey, D.M. (1988). Dopamine-containing retinal neurons revealed by in vitro fluorescence display a unique morphology. Science 240, 1196–1198.CrossRefGoogle Scholar
Dearry, A. & Burnside, B. (1986). Dopaminergic regulation of cone retinomotor movement in isolated teleost retina, 1: Induction of cone contraction is mediated by D2 receptors. Journal of Neurochemistry 46, 1006–1021.CrossRefGoogle Scholar
Dearry, A. & Burnside, B. (1989). Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epitheliurn. Journal of Neurochemistry 53, 870–878.CrossRefGoogle Scholar
Dowling, J.E. & Ehinger, B. (1975). Synaptic organization of the amine-containing interplexiform cells of the Goldfish and Cebus monkey retinas. Science 188, 270–273.CrossRefGoogle ScholarPubMed
Dowling, J.E., Ehinger, B. & Floren, I. (1980). Fluorescence and electron-microscopical observations on the amine-accumulating neurons of the Cebus monkey retina. Journal of Comparative Neurology 192, 665–686.CrossRefGoogle ScholarPubMed
Ehjnger, B. (1969). Adrenergic neurons in teleost retina. Zeitchrift für Zellforschung und Mikroskopische Anatomie 97, 285–297.CrossRefGoogle Scholar
Favard, C., Simon, A. & Nguyen-legros, J. (1989). Relationships between dopaminergic processes and blood capillary walls in rat and monkey retinas: an electron-microscope immunocytochemical study. Investigative Ophthalmology and Visual Science (Suppl.) 30, 20.Google Scholar
Frederick, J.M., Rayborn, M.E., Laties, A.M., Lam, D.M.K. & Hollyfield, J.G. (1982). Dopaminergic neurons in the human retina. Journal of Comparative Neurology 210, 65–79.CrossRefGoogle ScholarPubMed
Iuvone, M.P. (1986). Evidence for a D2 dopamine receptor in frog retina that decreases cyclic AMP accumulation and serotonin-N-acetyltransferase activity. Life Sciences 38, 331–342.CrossRefGoogle ScholarPubMed
Kemali, M., Milici, N. & Kemali, D. (1984). Drugs and the frog retina. Effects of dopaminergic agents on the pigment screening of light and dark-adapted frogs. Neuropharmacology 23, 381–390.CrossRefGoogle ScholarPubMed
Liman, E.R., Knapp, A.G. & Dowling, J.E. (1989). Enhancement of kainate-gated currents in retinal horizontal cells by cyclic AMP-dependent protein kinase. Brain Research 481, 399–402.CrossRefGoogle ScholarPubMed
Mariani, A.P., Neff, N.H. & Hadjiconstantinou, M. (1986). 1-methy14-phenyl-l,2,3,6-tetrahydropyridine (MPTP) treatment decreases dopamine and increases lipofuscin in mouse retina. Neuroscience Letters 72, 221–226.CrossRefGoogle ScholarPubMed
Nguyen-Legros, J. (1988). Morphology and distribution of catecholamine neurons in mammalian retina. In Progress in Retinal Research, Vol. 7, ed. Osborne, N. & Chader, G., pp. 113–147. Oxford, England: Pergamon Press.Google Scholar
Nguyen-Legros, J., Versaux-Botteri, C., Vigny, A. & Raoux, N.(1985). Tyrosine-hydroxylase fails to demonstrate dopaminergic interplexiform cells in the turtle retina. Brain Research 339, 323–328.CrossRefGoogle ScholarPubMed
Nguyen-Legros, J. & Simon, A. (1988). Dopamine-GABA relationship in the retina of Macaca nemestrina. European Journal of Neuroscience (Suppl.) 42, 6.Google Scholar
Nguyen-Legros, J., Simon, A. & Moussafi, F. (1989). Dopaminergic terminals from interplexiform cells reach the outer nuclear layer in rat and monkey retina. Investigative Ophthalmology and Visual Science (Suppl.) 30, 120.Google Scholar
Piccolino, M., Witkovsky, P. & Trimarchi, C. (1987). Dopaminergic mechanisms underlaying the reduction of electrical coupling between horizontal cells of the turtle retina induced by d-amphetamine, bicuculline, and veratridine. Journal of Neuroscience 7, 2273–2284.Google Scholar
Pierce, M.E. & Besharse, J.C. (1986). Melatonin and dopamine interactions in the regulation of rhythmic photoreceptor metabolism. In Pineal and Retinal Relationships, ed. O'Brien, P.J. & Klein, D.C., pp. 219–237. London, England: Academic Press.Google Scholar
Redburn, D.A. & Kyles, C.B. (1980). Localization and characterization of dopamine receptors within two synaptosome fractions of rabbit and bovine retina. Experimental Eye Research 30, 699–708.CrossRefGoogle ScholarPubMed
Savy, C., Yelnik, J., Martin-Martinelli, E., Karpouzas, I. & Nguyen-Legros, J. (1989). Distribution and spatial geometry of dopamine interplexiform cells in the rat retina, I: Developing retina. Journal of Comparative Neurology 289, 99–110.CrossRefGoogle ScholarPubMed
Stoof, J.C. (1989). Localization and pharmacology of some DA-receptor complexes in the striatum and pituitary gland: synaptic and nonsynaptic communication. Acta Morphologica Neerl-Scandinavica 26, 115–130.Google Scholar
Teranishi, T., Negishi, K. & Kato, S. (1984). Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina. Journal of Neuroscience 4, 1271–1280.CrossRefGoogle ScholarPubMed
Versaux-Botteri, C. & Nguyen-Legros, J. (1986). An improved method for tyrosine-hydroxylase immunolabeling of catecholamine cells in wholemounted rat retina. Journal of Histochemistry and Cytochemistry 34, 743–748.CrossRefGoogle Scholar
Vigny, A. (1981). Contribution à l'étude des propriétés structurales et régulatrices de la tyrosine hydroxylase de medullo-surrénale. Thèse de Doctorat ès Sciences, Université de Paris.Google Scholar
Weiler, R., Kohler, K., Kirsch, M. & Wagner, H.J. (1988). Glutamate and dopamine modulate synaptic plasticity in horizontal cell dendrites of fish retinae. Neuroscience Letters 87, 205–209.CrossRefGoogle Scholar
Wrtkovsky, P., Eldred, W. & Karten, H.J. (1984). Catecholamineand indoleamine-containing-neurons in the turtle retina. Journal of Comparative Neurology 228, 217–225.CrossRefGoogle Scholar
Yew, D.T., Li, W.W.Y., Zhang, D.R. & Luo, Z.B. (1988). Metabolic and phagocytic activities of the mouse retina after 6-hydroxydopa- mine treatment. Acta Anatomica 133, 27–29.CrossRefGoogle Scholar
Zarbin, M.A., Wamsley, J.K., Palacios, J.M. & Kuhar, M.J. (1986). Autoradiographic localization of high-affinity GABA, benzodiazepine, dopaminergic, adrenergic, and muscarinic cholinergic receptors in the rat, monkey, and human retina. Brain Research 374, 75–92.CrossRefGoogle ScholarPubMed
Zawilska, J. & luvone, P.M. (1989). D2-dopamine receptor activation decreases melatonin content and serotonin-N-acetyltransferase activity of chicken retina. Investigative Ophthalmology and Visual Science (Suppl.) 30, 123.Google Scholar
- 31
- Cited by