Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T07:10:45.888Z Has data issue: false hasContentIssue false

Sensitivity to full-field visual movement compatible with head rotation: Variations with eye-in-head position

Published online by Cambridge University Press:  02 June 2009

Laurence R. Harris
Affiliation:
Department of Psychology, York University, Toronto
Lori A. Lott
Affiliation:
Department of Psychology, York University, Toronto

Abstract

Variations in velocity detection thresholds for full-field visual rotation about various axes are compatible with a simple channel-based system for coding the axis and velocity of the rotation (Harris & Lott, 1995). The present paper looks at the frame of reference for this system. The head-centered, craniotopic reference system and the retinal-based, retinotopic reference systems were separated by using eccentric eye positions. We measured the threshold for detecting full-field visual rotation about a selection of axes in the sagittal plane with the eyes held either 22½ degs up, straight ahead or 22½ degs down in the head. The characteristic features of the variation in detection thresholds did not stay stable in craniotopic coordinates but moved with the eyes and were constant in retinotopic coordinates. This suggests that the coding of head rotation by the visual system is in retinotopic coordinates.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barmack, N.H. & Hess, D.T. (1980). Multiple-unit activity evoked in dorsal cap of inferior olive of the rabbit by visual stimulation. Journal of Neurophysiology 43, 151164.CrossRefGoogle ScholarPubMed
Bauer, R. (1980). Visual-vestibular convergence in the vestibular nuclei of the cat. Biological Cybernetics 37, 1924.CrossRefGoogle ScholarPubMed
Blanks, R.H.I., Bennett, M.L., Curthoys, I.S. & Markham, C.H. (1985). Planar relationships of the semicircular canals in rhesus and squirrel-monkeys. Brain Research 340, 315324.CrossRefGoogle ScholarPubMed
Buisseret-Delmas, C., Epelbaum, M. & Buisseret, P. (1990). The vestibular nuclei of the cat receive a primary afferent projection from receptors in extraocular-muscles. Experimental Brain Research 81, 654658.CrossRefGoogle ScholarPubMed
Collewijn, H., Van Der Steen, J., Ferman, L. & Jansen, D.C. (1985). Human ocular counterroll: Assessment of static and dynamic properties from scleral search coil recordings. Experimental Brain Research 59, 185196.CrossRefGoogle Scholar
Estes, M.S., Blanks, R.H.I. & Markham, C.H. (1975). Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. Journal of Neurophysiology 38, 12321248.CrossRefGoogle ScholarPubMed
Fetter, M., Tweed, D., Misslisch, H., Fischer, D. & Koenig, E. (1992). Multidimensional descriptions of the optokinetic and vestibuloocular reflexes. Annals of the New York Academy of Sciences 656, 841842.CrossRefGoogle ScholarPubMed
Graf, W., Simpson, J.I. & Leonard, C.S. (1988). Spatial-organization of visual messages of the rabbits cerebellar flocculus. 2. Complex and simple spike responses of Purkinje-cells. Journal of Neurophysiology 60, 20912121.CrossRefGoogle ScholarPubMed
Harris, L.R. (1994). Visual motion caused by movements of the eye, head and body. In Visual Detection of Motion., ed. Smith, A.T. & Snowden, R.J., pp. 397435. London: Academic Press.Google Scholar
Harris, L.R., Blakemore, C. & Donaghy, M. (1980). Integration of visual and auditory space in the mammalian superior colliculus. Nature 288, 5659.CrossRefGoogle ScholarPubMed
Harris, L.R. & Isaacs, T.W. (1982). Visual responses of the dorsal cap of the inferior olive in the rat. Journal of Physiology (London) 329, P23–P24.Google Scholar
Harris, L.R. & Lott, L.A. (1993). Thresholds for full-field visual motion indicate an axis based coding system similar to that of the vestibular system. Neuroscience Abstracts 19, 316.21.Google Scholar
Harris, L.R. & Lott, L.A. (1994). Thresholds for full-field visualmotion‐variation with eye-in-head position. Investigative Ophthalmology and Visual Science 35, 2000.Google Scholar
Harris, L.R. & Lott, L.A. (1995). Sensitivity to full-field visual movement compatible with head rotation: Variations among axes of rotation. Visual Neuroscience 12, 743754.CrossRefGoogle ScholarPubMed
Henn, V., Young, L. & Finley, C. (1974). Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Research 71, 144149.CrossRefGoogle ScholarPubMed
Honrubia, V., Downey, W.L., Mitchell, D.P. & Ward, P.H. (1968). Experimental studies on optokinetic nystagmus. II. Normal humans. Acta Oto-Laryngologica 65, 441448.CrossRefGoogle ScholarPubMed
Horn, K.M., Miller, S.W. & Neilson, H.C. (1983). Visual modulation of neuronal activity within the rat vestibular nuclei. Experimental Brain Research 52, 311313.CrossRefGoogle ScholarPubMed
Jay, M.F. & Sparks, D.L. (1984). Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309, 345347.CrossRefGoogle ScholarPubMed
Keller, E.L. & Precht, W. (1979). Visual-vestibular responses in vestibular nuclear neurones in the intact and cerebellectomized, alert cat. Neuroscience 4, 15991613.CrossRefGoogle ScholarPubMed
Keppel, G. (1982). Design and Analysis: A Researcher's Handbook, 2nd edition. Englewood Cliffs, New Jersey: Prentice Hall Inc.Google Scholar
Leonard, C.S., Simpson, J.I. & Graf, W. (1988). Spatial-organization of visual messages of the rabbits cerebellar flocculus. 1. Typology of inferior olive neurons of the dorsal cap of Kooy. Journal of Neurophysiology 60, 20732090.CrossRefGoogle ScholarPubMed
Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America 49, 467477.CrossRefGoogle ScholarPubMed
Miles, F.A. & Wallman, J. (1993). Visual Motion and its Role in the Stabilization of Gaze. North Holland: Elsevier.Google Scholar
Miller, J.M. & Robins, D. (1987). Extraocular muscle sideslip and orbital geometry in monkeys. Vision Research 27, 381392.CrossRefGoogle ScholarPubMed
Regan, D. (1982). Visual information channelling in normal and disordered vision. Psychological Review 89, 407444.CrossRefGoogle ScholarPubMed
Reisine, H., Simpson, J.I. & Henn, V. (1988). A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the Rhesus-monkey. Annals of the New York Academy of Sciences 545, 1020.CrossRefGoogle ScholarPubMed
Robinson, D.A. (1977). Linear addition of optokinetic and vestibular signals in the vestibular nucleus. Experimental Brain Research 30, 447450.Google ScholarPubMed
Simpson, J.I. (1984). The accessory optic system. Annual Review of Neuroscience 7, 1341.CrossRefGoogle ScholarPubMed
Simpson, J.I. & Graf, W. (1981). Eye muscle geometry and compensatory eye movements in lateral-eyed and frontal-eyed animals. Annals of the New York Academy of Sciences 374, 2030.CrossRefGoogle ScholarPubMed
Simpson, J.I., Graf, W. & Leonard, C. (1981). The coordinate system of visual climbing fibers to the flocculus. In Progress in Oculomotor Research, ed. Fuchs, A.F. & Becker, W., pp. 475484. North Holland: Elsevier.Google Scholar
Simpson, J.I., Leonard, C.S. & Soodak, R.E. (1988). The accessory optic-system of rabbit. 2. Spatial-organization of direction selectivity. Journal of Neurophysiology 60, 20552072.CrossRefGoogle ScholarPubMed
Soodak, R.E. & Simpson, J.I. (1988). The accessory optic-system of rabbit. 1. Basic visual response properties. Journal of Neurophysiology 60, 20372054.CrossRefGoogle ScholarPubMed
Takeda, T. & Maekawa, K. (1980). Bilateral visual inputs to the dorsal cap of inferior olive: differential localization and inhibitory interactions. Experimental Brain Research 39, 461471.CrossRefGoogle Scholar
Tan, H.S., Van Der Steen, J., Simpson, J.I. & Collewijn, H. (1993). 3-dimensional organization of optokinetic responses in the rabbit. Journal of Neurophysiology 69, 303317.CrossRefGoogle Scholar
Van Der Steen, J., Simpson, J.I. & Tan, J. (1994). Functional and anatomic organization of 3-dimensional eye-movements in rabbit cerebellar flocculus. Journal of Neurophysiology 72, 3146.CrossRefGoogle Scholar
Waespe, W., BÜttner, U. & Henn, V. (1981). Visual-vestibular interaction in the flocculus of the alert monkey, 1: Input activity. Experimental Brain Research 43, 337348.CrossRefGoogle Scholar
Waespe, W. & Henn, V. (1977 a). Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Experimental Brain Research 27, 523538.CrossRefGoogle ScholarPubMed
Waespe, W. & Henn, V. (1977 b). Vestibular nuclei activity during optokinetic after-nystagmus (OKAN) in the alert monkey. Experimental Brain Research 30, 323330.Google ScholarPubMed
Waespe, W. & Henn, V. (1978). Conflicting visual-vestibular stimulation and vestibular nucleus activity in alert monkeys. Experimental Brain Research 33, 203211.CrossRefGoogle ScholarPubMed
Waespe, W. & Henn, V. (1979). The velocity response of vestibular nucleus neurons during vestibular, visual and combined angular acceleration. Experimental Brain Research 37, 337347.CrossRefGoogle ScholarPubMed
Waespe, W. & Henn, V. (1981). Visual-vestibular interaction in the flocculus of the alert monkey, 2: Purkinje cell activity. Experimental Brain Research 43, 349360.CrossRefGoogle Scholar
Wetherill, G.B. & Levitt, H. (1965). Sequential estimation of points on a psychometric function. British Journal of Mathematical and Statistical Psychology 18, 110.CrossRefGoogle ScholarPubMed
Wylie, D.R. & Frost, B.J. (1990). Binocular neurons in the nucleus of the basal optic root (nbor) of the pigeon are selective for either translational or rotational visual flow. Visual Neuroscience 5, 489495.CrossRefGoogle ScholarPubMed
Wylie, D.R. & Frost, B.J. (1993). Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. 2. The 3-dimensional reference frame of rotation neurons in the flocculus. Journal of Neurophysiology 70, 26472659.CrossRefGoogle ScholarPubMed
Wylie, D.R., Kripalani, T. & Frost, B.J. (1993). Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. 1. Functional-organization of neurons discriminating between translational and rotational visual flow. Journal of Neurophysiology 70, 26322646.CrossRefGoogle ScholarPubMed