Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T10:25:08.654Z Has data issue: false hasContentIssue false

Spatial and temporal distribution patterns of Na-K-2Cl cotransporter in adult and developing mouse retinas

Published online by Cambridge University Press:  28 April 2008

BAOQIN LI
Affiliation:
Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
KELLI McKERNAN
Affiliation:
Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
WEN SHEN*
Affiliation:
Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
*
Address correspondence and reprint requests to: Wen Shen, Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431. E-mail: wshen@fau.edu

Abstract

The Na-K-2Cl cotransporter (NKCC) is a Cl uptake transporter that is responsible for maintaining a Cl equilibrium potential positive to the resting potential in neurons. If NKCC is active, GABA and glycine can depolarize neurons. In view of the abundance of GABAergic and glycinergic synapses in retina, we undertook a series of studies using immunocytochemical techniques to determine the distribution of NKCC in retinas of both developing and adult mice. We found NKCC antibody (T4) labeling present in retinas from wild-type mice, but not in NKCC1-deficient mice, suggesting that the NKCC1 subtype is a major Cl uptake transporter in mouse retina. Strong labeling of NKCC1 was present in horizontal cells and rod-bipolar dendrites in adult mice. Interestingly, we also found that a diffuse labeling pattern was present in photoreceptor terminals. However, NKCC1 was barely detectable in the inner retina of adult mice. Using an antibody against K-Cl cotransporter 2 (KCC2), we found that KCC2, a transporter that extrudes Cl, was primarily expressed in the inner retina. The expression of NKCC1 in developing mouse retinas was studied from postnatal day (P) 1 to P21, NKCC1 labeling first appeared in the dendrites of horizontal and rod-bipolar cells as early as P7, followed by photoreceptor terminals between P10-P14; with expression gradually increasing concomitantly with the growth of synaptic terminals and dendrites throughout retinal development. In the inner retina, NKCC1 labeling was initially observed in the inner plexiform layer at P1, but labeling diminished after P5. The developmental increase in NKCC expression only occurred in the outer retina. Our results suggest that the distal synapses and synaptogenesis in mouse retinas undergo a unique process with a high intracellular Cl presence due to NKCC1 expression.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balkema, G.W. & Rizkalla, R. (1996). Ultrastructural localization of a synaptic ribbon protein recognized by antibody B16. Journal of Neurocytology 25, 565571.CrossRefGoogle ScholarPubMed
Beltran, W.A., Rohrer, H. & Aguirre, G.D. (2005). Immunolocalization of ciliary neurotrophic factor receptor alpha (CNTFRalpha) in mammalian photoreceptor cells. Molecular Vision 11, 232244.Google ScholarPubMed
Ben-Ari, Y. (2002). Excitatory actions of GABA during development: The nature of the nurture. Nature Reviews Neurosciences 3, 728739.CrossRefGoogle ScholarPubMed
Blanco, R., Vaquero, C.F. & de la Villa, P. (1996). The effects of GABA and glycine on horizontal cells of the rabbit retina. Vision Research 36, 39873995.CrossRefGoogle ScholarPubMed
Blanks, J.C., Adinolfi, A.M. & Lolley, R.N. (1974). Synaptogenesis in the photoreceptor terminal of the mouse retina. Journal of Comparative Neurology 156, 8193.CrossRefGoogle ScholarPubMed
Cherubini, E., Gaiarsa, J.L. & Ben-Ari, Y. (1991). GABA: An excitatory transmitter in early postnatal life. Trends in Neuroscience 14, 515519.CrossRefGoogle ScholarPubMed
Delpire, E., Lu, J., England, R., Dull, C. & Thorne, T. (1999). Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nature Genetics 22, 192195.CrossRefGoogle ScholarPubMed
Duebel, J., Haverkamp, S., Schleich, W., Feng, G., Augustine, G., Kuner, T. & Euler, T. (2005). Two-photon imagining reveals somatodendritic chloride gradient in retinal On-type bipolar cells expressing the biosensor clomeleon. Neuron 49, 8194.CrossRefGoogle Scholar
Feigenspan, A., Janssen-Bienhold, U., Hormuzdi, S., Monyer, H., Degen, J., Sohl, G., Willecke, K., Ammermuller, J. & Weiler, R. (2004). Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. Journal of Neuroscience 24, 33253334.CrossRefGoogle ScholarPubMed
Feigenspan, A. & Weiler, R. (2004). Electrophysiological properties of mouse horizontal cell GABAA receptors. Journal of Neurophysiology 92, 27892801.CrossRefGoogle ScholarPubMed
Gavrikov, K.E., Nilson, J.E., Dmitriev, A.V., Zucker, C.L. & Mangel, S.C. (2006). Dendritic compartmentalization of chloride cotransporters underlies directional responses of starburst amacrine cells in retina. Proceedings of the National Academy of Sciences USA 103, 1879318798.CrossRefGoogle ScholarPubMed
Haas, M. & Forbush, B III. (1998). The Na-K-Cl cotransporters. Journal of Bioenergetics and Biomembranes 30, 161172.CrossRefGoogle ScholarPubMed
Jang, I.S., Jeong, H.J. & Akaike, N. (2001). Contribution of the Na-K-Cl cotransporter on GABA(A) receptor-mediated presynaptic depolarization in excitatory nerve terminals. Journal of Neuroscience 21, 59625972.CrossRefGoogle ScholarPubMed
Jellali, A., Stussi-Garaud, C., Gasnier, B., Rendon, A., Sahel, J.A., Dreyfus, H. & Picaud, S. (2002). Cellular localization of the vesicular inhibitory amino acid transporter in the mouse and human retina. Journal of Comparative Neurology 449, 7687.CrossRefGoogle ScholarPubMed
Kakazu, Y., Akaike, N., Komiyama, S. & Nabekura, J. (1999). Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. Journal of Neuroscience 19, 28432851.CrossRefGoogle ScholarPubMed
Kaneko, A. & Tachibana, M. (1986). Effects of gamma-aminobutyric acid on isolated cone photoreceptors of the turtle retina. Journal of Physiology 373, 443461.CrossRefGoogle ScholarPubMed
Kaneko, H., Putzier, I., Frings, S., Kaupp, U.B. & Gensch, T. (2004). Chloride accumulation in mammalian olfactory sensory neurons. Journal of Neuroscience 24, 79317938.CrossRefGoogle ScholarPubMed
Marty, S., Wehrle, R., Alvarez-Leefmans, F.J., Gasnier, B. & Sotelo, C. (2002). Postnatal maturation of Na, K, 2Cl cotransporter's expression and inhibitory synaptogenesis in the rat hippocampus: An immunocytochemical analysis. European Journal of Neuroscience 15, 233245.CrossRefGoogle Scholar
Mataruga, A., Kremmer, E. & Müller, F. (2007). Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina. Journal of Comparative Neurology 502, 11231137.CrossRefGoogle ScholarPubMed
Miller, R.F. & Dacheux, R.F. (1983). Intracellular chloride in retinal neurons: measurement and meaning. Vision Research 23, 399411.CrossRefGoogle ScholarPubMed
Müller, F., Scholten, A., Ivanova, E., Haverkamp, S., Kremmer, E. & Kaupp, U.B. (2003). HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminals. European Journal of Neuroscience 17, 20842096.CrossRefGoogle ScholarPubMed
Reisert, J., Lai, J., Yau, K.W. & Bradley, J. (2005). Mechanism of the excitatory Cl− response in mouse olfactory receptor neurons. Neuron 45, 553561.CrossRefGoogle ScholarPubMed
Rich, K.A., Zhan, Y. & Blanks, J.C. (1997). Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. Journal of Comparative Neurology 388, 4763.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Rivera, C., Voipio, J., Payne, J.A., Ruusuvuori, E., Lahtinen, H., Lamsa, K., Pirvola, U., Saarma, M. & Kaila, K. (1999). The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251255.CrossRefGoogle Scholar
Russell, J.M. (2000). Sodium-potassium-chloride cotransport. Physiology Review 80, 211276.CrossRefGoogle ScholarPubMed
Satoh, H., Kaneda, M. & Kaneko, A. (2001). Intracellular chloride concentration is higher in rod bipolar cells than in cone bipolar cells of the mouse retina. Neuroscience Letters 310, 161164.CrossRefGoogle ScholarPubMed
Sharma, R.K., O'Leary, T.E., Fields, C.M. & Johnson, D.A. (2003). Development of the outer retina in the mouse. Brain Research. Developmental Brain Research 145, 93105.CrossRefGoogle ScholarPubMed
Shen, W. (2005). Repetitive light stimulation inducing glycine receptor plasticity in the retinal neurons. Journal of Neurophysiology 94, 22312238.CrossRefGoogle ScholarPubMed
Sherry, D.M., Wang, M.M., Bates, J. & Frishman, L.J. (2003). Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. Journal of Comparative Neurology 465, 480498.CrossRefGoogle ScholarPubMed
Stockton, R.A. & Slaughter, M.M. (1991). Depolarizing actions of GABA and glycine on amphibian retinal horizontal cells. Journal of Neurophysiology 65, 680692.CrossRefGoogle ScholarPubMed
Sun, D. & Murali, S.G. (1999). Na+-K+-2Cl− cotransporter in immature cortical neurons: A role in intracellular Cl− regulation. Journal of Neurophysiology 81, 19391948.CrossRefGoogle ScholarPubMed
Sung, K.W., Kirby, M., McDonald, M.P., Lovinger, D.M. & Delpire, E. (2000). Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. Journal of Neuroscience 20, 75317538.CrossRefGoogle ScholarPubMed
Thoreson, W.B. & Bryson, E.J. (2004). Chloride equilibrium potential in salamander cones. BMC Neuroscience 5, 53.CrossRefGoogle ScholarPubMed
Thoreson, W.B., Stella, S.L. Jr., Bryson, E.I., Clements, J. & Witkovsky, P. (2002). D2-like dopamine receptors promote interactions between calcium and chloride channels that diminish rod synaptic transfer in the salamander retina. Visual Neuroscience 19, 235247.CrossRefGoogle ScholarPubMed
Vardi, N., Zhang, L.L., Payne, J.A. & Sterling, P. (2000). Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. Journal of Neuroscience 20, 76577663.CrossRefGoogle ScholarPubMed
Varela, C., Blanco, R. & de la Villa, P. (2005a). Depolarizing effect of GABA in rod bipolar cells of the mouse retina. Vision Research 45, 26592667.CrossRefGoogle ScholarPubMed
Varela, C., Rivera, L., Blanco, R. & de la Villa, P. (2005b). Depolarizing effect of GABA in horizontal cells of the rabbit retina. Neuroscience Research 53, 257264.CrossRefGoogle ScholarPubMed
Vu, T.Q., Payne, J.A. & Copenhagen, D.R. (2000). Localization and developmental expression patterns of the neuronal K-Cl cotransporter (KCC2) in the rat retina. Journal of Neuroscience 20, 14141423.CrossRefGoogle ScholarPubMed
Wang, M.M., Janz, R., Belizaire, R., Frishman, L.J. & Sherry, D.M. (2003). Differential distribution and developmental expression of synaptic vesicle protein 2 isoforms in the mouse retina. Journal of Compartive Neurology 460, 106122.CrossRefGoogle ScholarPubMed
Wässle, H., Yamashita, M., Greferath, U., Grünert, U. & Müller, F. (1991). The rod bipolar cell of the mammalian retina. Visual Neuroscience 7, 99112.CrossRefGoogle ScholarPubMed
Yan, Y., Dempsey, R.J., Flemmer, A., Forbush, B. & Sun, D. (2003). Inhibition of Na(+)-K(+)-Cl(−) cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Research 961, 2231.CrossRefGoogle ScholarPubMed
Zhang, L.L., Fina, M.E. & Vardi, N. (2006a). Regulation of KCC2 and NKCC during development: Membrane insertion and differences between cell types. Journal of Comparative Neurology 499, 132143.CrossRefGoogle ScholarPubMed
Zhang, L.L., Pathak, H.R., Coulter, D.A., Freed, M.A. & Vardi, N. (2006b). Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina. Journal of Neurophysiology 95, 24042416.CrossRefGoogle ScholarPubMed