Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T06:31:48.080Z Has data issue: false hasContentIssue false

Survival and remodeling of melanopsin cells during retinal dystrophy

Published online by Cambridge University Press:  28 April 2008

ANTHONY A. VUGLER*
Affiliation:
Institute of Ophthalmology, University College London, London, United Kingdom
MA'AYAN SEMO
Affiliation:
Institute of Ophthalmology, University College London, London, United Kingdom
ANNA JOSEPH
Affiliation:
Institute of Ophthalmology, University College London, London, United Kingdom
GLEN JEFFERY
Affiliation:
Institute of Ophthalmology, University College London, London, United Kingdom
*
Address correspondence and reprint requests to: Anthony Vugler, UCL-Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom. E-mail: a.vugler@ucl.ac.uk

Abstract

The melanopsin positive, intrinsically photosensitive retinal ganglion cells (ipRGCs) of the inner retina have been shown to send wide-ranging projections throughout the brain. To investigate the response of this important cell type during retinal dystrophy, we use the Royal College of Surgeons (RCS) dystrophic rat, a major model of retinal degeneration. We find that ipRGCs exhibit a distinctive molecular profile that remains unaltered during early stages of outer retinal pathology (15 weeks of age). In particular, these cells express βIII tubulin, α-acetylated tubulin, and microtubule-associated proteins (MAPs), while remaining negative for other RGC markers such as neurofilaments, calretinin, and parvalbumin. By 14 months of age, melanopsin positive fibers invade ectopic locations in the dystrophic retina and ipRGC axons/dendrites become distorted (a process that may involve vascular remodeling). The morphological abnormalities in melanopsin processes are associated with elevated immunoreactivity for MAP1b and a reduction in α-acetylated tubulin. Quantification of ipRGCs in whole mounts reveals reduced melanopsin cell number with increasing age. Focusing on the retinal periphery, we find a significant decline in melanopsin cell density contrasted by a stability of melanopsin positive processes. In addition to these findings, we describe for the first time, a distinct plexus of melanopsin processes in the far peripheral retina, a structure that is coincident with a short wavelength opsin cone-enriched rim. We conclude that some ipRGCs are lost in RCS dystrophic rats as the disease progresses and that this loss may involve vascular remodeling. However, a significant number of melanopsin positive cells survive into advanced stages of retinal degeneration and show indications of remodeling in response to pathology. Our findings underline the importance of early intervention in human retinal disease in order to preserve integrity of the inner retinal photoreceptive network.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J.C. (1981). Heavy metal intensification of DAB-based HRP reaction product. Journal of Histochemistry Cytochemistry 29, 775.CrossRefGoogle ScholarPubMed
Barnstable, C.J., Blum, A.S., Devoto, S.H., Hicks, D., Morabito, M.A., Sparrow, J.R. & Treisman, J.E. (1988). Cell differentiation and pattern formation in the developing mammalian retina. Neuroscience Research Supplement 8, S27–41.CrossRefGoogle ScholarPubMed
Bates, C.A., Trinh, N. & Meyer, R.L. (1993). Distribution of microtubule-associated proteins (MAPs) in adult and embryonic mouse retinal explants: Presence of the embryonic map, MAP5/1B, in regenerating adult retinal axons. Developmental Biology 155, 533544.CrossRefGoogle ScholarPubMed
Berson, D.M., Dunn, F.A. & Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 10701073.CrossRefGoogle ScholarPubMed
Bouquet, C., Soares, S., von Boxberg, Y., Ravaille-Veron, M., Propst, F. & Nothias, F. (2004). Microtubule-associated protein 1B controls directionality of growth cone migration and axonal branching in regeneration of adult dorsal root ganglia neurons. Journal of Neuroscience 24, 72047213.CrossRefGoogle ScholarPubMed
Chaitin, M.H. & Hall, M.O. (1983). Defective ingestion of rod outer segments by cultured dystrophic rat pigment epithelial cells. Investigative Ophthalmology & Visual Science 24, 812820.Google ScholarPubMed
Curcio, C.A., Medeiros, N.E. & Millican, C.L. (1996). Photoreceptor loss in age-related macular degeneration. Investigative Ophthalmology & Visual Science 37, 12361249.Google ScholarPubMed
D'Cruz, P.M., Yasumura, D., Weir, J., Matthes, M.T., Abderrahim, H., LaVail, M.M. & Vollrath, D. (2000). Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Human Molecular Genet 9, 645651.CrossRefGoogle ScholarPubMed
Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.W. & Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749754.CrossRefGoogle Scholar
Delyfer, M.N., Leveillard, T., Mohand-Said, S., Hicks, D., Picaud, S. & Sahel, J.A. (2004). Inherited retinal degenerations: therapeutic prospects. Biology of the Cell 96, 261269.CrossRefGoogle ScholarPubMed
Essner, E., Pino, R.M. & Griewski, R.A. (1979). Permeability of retinal capillaries in rats with inherited retinal degeneration. Investigative Ophthalmology and Visual Science 18, 859863.Google ScholarPubMed
Fahrenkrug, J., Nielsen, H.S. & Hannibal, J. (2004). Expression of melanopsin during development of the rat retina. Neuroreport 15, 781784.CrossRefGoogle ScholarPubMed
Gobersztejn, F. & Britto, L.R. (1996). Calretinin in the mouse superior colliculus originates from retinal ganglion cells. Brazilian Journal of Medical and Biological Research 29, 15071511.Google ScholarPubMed
Hall, G.F., Lee, V.M. & Kosik, K.S. (1991). Microtubule destabilization and neurofilament phosphorylation precede dendritic sprouting after close axotomy of lamprey central neurons. Proceedings of the National Academy of Sciences 88, 50165020.CrossRefGoogle ScholarPubMed
Hannibal, J., Hindersson, P., Knudsen, S.M., Georg, B. & Fahrenkrug, J. (2002). The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. Journal of Neuroscience 22, RC191.CrossRefGoogle ScholarPubMed
Hartnett, M.E., Weiter, J.J., Staurenghi, G. & Elsner, A.E. (1996). Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103, 20422053.CrossRefGoogle ScholarPubMed
Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K.W. & Berson, D.M. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. Journal of Comparative Neurology 497, 326349.CrossRefGoogle ScholarPubMed
Hattar, S., Liao, H.W., Takao, M., Berson, D.M. & Yau, K.W. (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 10651070.CrossRefGoogle ScholarPubMed
Hwang, I.K., Yoo, K.Y., Kim, D.S., Jung, J.Y., Shin, M.C., Seo, K., Kim, K.S., Kang, T.C. & Won, M.H. (2005). Comparative study on calretinin immunoreactivity in gerbil and rat retina. Anatomica Histologia Embryologia 34, 129131.CrossRefGoogle ScholarPubMed
Isoldi, M.C., Rollag, M.D., Castrucci, A.M. & Provencio, I. (2005). Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proceedings of the National Academy of Sciences USA 102, 12171221.CrossRefGoogle ScholarPubMed
Jones, B.W., Watt, C.B., Frederick, J.M., Baehr, W., Chen, C.K., Levine, E.M., Milam, A.H., Lavail, M.M. & Marc, R.E. (2003). Retinal remodeling triggered by photoreceptor degenerations. Journal of Comparative Neurology 464, 116.CrossRefGoogle ScholarPubMed
Klassen, H.J., Ng, T.F., Kurimoto, Y., Kirov, I., Shatos, M., Coffey, P. & Young, M.J. (2004). Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Investigative Ophthalmology & Visual Science 45, 41674173.CrossRefGoogle ScholarPubMed
Klassen, H., Whiteley, S.J., Young, M.J. & Lund, R.D. (2001). Graft location affects functional rescue following RPE cell transplantation in the RCS rat. Experimental Neurology 169, 114121.CrossRefGoogle ScholarPubMed
Kwan, A.S., Wang, S. & Lund, R.D. (1999). Photoreceptor layer reconstruction in a rodent model of retinal degeneration. Experiential Neurology 159, 2133.CrossRefGoogle Scholar
LaVail, M.M. & Battelle, B.A. (1975). Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Experimental Eye Research 21, 167192.CrossRefGoogle ScholarPubMed
Lucas, R.J., Hattar, S., Takao, M., Berson, D.M., Foster, R.G. & Yau, K.W. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245247.CrossRefGoogle ScholarPubMed
MacLaren, R.E., Pearson, R.A., MacNeil, A., Douglas, R.H., Salt, T.E., Akimoto, M., Swaroop, A., Sowden, J.C. & Ali, R.R. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203207.CrossRefGoogle ScholarPubMed
Marc, R.E., Jones, B.W., Watt, C.B. & Strettoi, E. (2003). Neural remodeling in retinal degeneration. Progress in Retinal and Eye Research 22, 607655.CrossRefGoogle ScholarPubMed
McKerracher, L., Vallee, R.B. & Aguayo, A.J. (1989). Microtubule-associated protein 1A (MAP 1A) is a ganglion cell marker in adult rat retina. Visual Neuroscience 2, 349356.CrossRefGoogle ScholarPubMed
Medeiros, N.E. & Curcio, C.A. (2001). Preservation of ganglion cell layer neurons in age-related macular degeneration. Investigative Ophthalmology & Visual Science 42, 795803.Google ScholarPubMed
Melyan, Z., Tarttelin, E.E., Bellingham, J., Lucas, R.J. & Hankins, M.W. (2005). Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741745.CrossRefGoogle ScholarPubMed
Newman, N.M., Stevens, R.A. & Heckenlively, J.R. (1987). Nerve fibre layer loss in diseases of the outer retinal layer. British Journal of Ophthalmology 71, 2126.CrossRefGoogle ScholarPubMed
Okabe, S., Shiomura, Y. & Hirokawa, N. (1989). Immunocytochemical localization of microtubule-associated proteins 1A and 2 in the rat retina. Brain Research 483, 335346.CrossRefGoogle ScholarPubMed
Panda, S., Nayak, S.K., Campo, B., Walker, J.R., Hogenesch, J.B. & Jegla, T. (2005). Illumination of the melanopsin signaling pathway. Science 307, 600604.CrossRefGoogle ScholarPubMed
Peirson, S.N., Bovee-Geurts, P.H., Lupi, D., Jeffery, G., DeGrip, W.J. & Foster, R.G. (2004). Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium. Brain Research Molecular Brain Research 123, 132135.CrossRefGoogle ScholarPubMed
Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P. & Rollag, M.D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences USA 95, 340345.CrossRefGoogle ScholarPubMed
Provencio, I., Rollag, M.D. & Castrucci, A.M. (2002). Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493.CrossRefGoogle ScholarPubMed
Qiu, X., Kumbalasiri, T., Carlson, S.M., Wong, K.Y., Krishna, V., Provencio, I. & Berson, D.M. (2005). Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745749.CrossRefGoogle ScholarPubMed
Ramirez, J.M., Ramirez, A.I., Salazar, J.J., de Hoz, R. & Trivino, A. (2001). Changes of astrocytes in retinal ageing and age-related macular degeneration. Experimental Eye Research 73, 601615.CrossRefGoogle ScholarPubMed
Robinson, G.A. & Madison, R.D. (2004). Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vision Research 44, 26672674.CrossRefGoogle Scholar
Roufail, E., Stringer, M. & Rees, S. (1995). Nitric oxide synthase immunoreactivity and NADPH diaphorase staining are co-localised in neurons closely associated with the vasculature in rat and human retina. Brain Research 684, 3646.CrossRefGoogle ScholarPubMed
Sakamoto, K., Liu, C. & Tosini, G. (2004). Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. Journal of Neuroscience 24, 96939697.CrossRefGoogle ScholarPubMed
Sale, W.S., Besharse, J.C. & Piperno, G. (1988). Distribution of acetylated alpha-tubulin in retina and in vitro-assembled microtubules. Cell Motility Cytoskeleton 9, 243253.CrossRefGoogle ScholarPubMed
Sanna, P.P., Keyser, K.T., Battenberg, E. & Bloom, F.E. (1990). Parvalbumin immunoreactivity in the rat retina. Neuroscience Letters 118, 136139.CrossRefGoogle ScholarPubMed
Santos, A., Humayun, M.S., de Juan, E. Jr., Greenburg, R.J., Marsh, M.J., Klock, I.B. & Milam, A.H. (1997). Preservation of the inner retina in retinitis pigmentosa. Archives of Ophthalmology 115, 511515.CrossRefGoogle ScholarPubMed
Semo, M., Lupi, D., Peirson, S.N., Butler, J.N. & Foster, R.G. (2003). Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. European Journal of Neuroscience 18, 30073017.CrossRefGoogle Scholar
Shaw, G. & Weber, K. (1984). The intermediate filament complement of the retina: A comparison between different mammalian species. European Journal of Cell Biology 33, 95104.Google ScholarPubMed
Stone, J.L., Barlow, W.E., Humayun, M.S., de Juan, E. Jr. & Milam, A.H. (1992). Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Archives of Ophthalmology 110, 16341639.CrossRefGoogle ScholarPubMed
Szél, A. & Röhlich, P. (1992). Two cone types of rat retina detected by anti-visual pigment antibodies. Experimental Eye Research 55, 4752.CrossRefGoogle ScholarPubMed
Szél, A., Röhlich, P, Caffe, A.R. & van Veen, T. (1996). Distribution of cone photoreceptors in the mammalian retina. Microscopy Research and Technique 35, 445462.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Tucker, R.P. & Matus, A.I. (1988). Microtubule-associated proteins characteristic of embryonic brain are found in the adult mammalian retina. Developmental Biology 130, 423434.CrossRefGoogle ScholarPubMed
Villegas-Pérez, M.P., Lawrence, J.M., Vidal-Sanz, M., Lavail, M.M. & Lund, R.D. (1998). Ganglion cell loss in RCS rat retina: A result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. Journal of Comparative Neurology 392, 5877.3.0.CO;2-O>CrossRefGoogle Scholar
Vugler, A. (2005). The relationship between retinal melanopsin and dopamine systems in the Royal College of Surgeons rat. Washington, DC: Society for Neuroscience Abstract Viewer/Itinerary Planner, Program No. 977.978.Google Scholar
Vugler, A.A. & Coffey, P.J. (2003). Loss of calretinin immunoreactive fibers in subcortical visual recipient structures of the RCS dystrophic rat. Experimental Neurology 184, 464478.CrossRefGoogle ScholarPubMed
Vugler, A.A., Redgrave, P., Semo, M., Lawrence, J., Greenwood, J. & Coffey, P.J. (2007). Dopamine neurones form a discrete plexus with melanopsin cells in normal and degenerating retina. Experimental Neurology 205, 2635.CrossRefGoogle Scholar
Wan, J., Zheng, H., Hu, B.Y., Xiao, H.L., She, Z.J., Chen, Z.L. & Zhou, G.M. (2006). Acute photoreceptor degeneration down-regulates melanopsin expression in adult rat retina. Neuroscience Letter 400, 4852.CrossRefGoogle ScholarPubMed
Wang, S., Villegas-Pérez, M.P., Vidal-Sanz, M. & Lund, R.D. (2000). Progressive optic axon dystrophy and vacuslar changes in rd mice. Investigative Ophthalmology & Visual Science 41, 537545.Google ScholarPubMed
Wässle, H., Grünert, U. & Röhrenbeck, J. (1993). Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. Journal of Comparative Neurology 332, 407420.CrossRefGoogle ScholarPubMed
Williams, R.W. (1991). The human retina has a cone-enriched rim. Visual Neuroscience 6, 403406.CrossRefGoogle Scholar
Young, R.W. (1987). Pathophysiology of age-related macular degeneration. Survey of Ophthalmology 31, 291306.CrossRefGoogle ScholarPubMed