Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T23:24:42.107Z Has data issue: false hasContentIssue false

Absorption, Translocation, and Metabolism of AC 263,222 in Selected Soybean (Glycine Max) Cultivars

Published online by Cambridge University Press:  12 June 2017

Larry J. Newsom
Affiliation:
Dep. Plant & Soil Sci., Miss. State Univ., Mississippi State, MS 39762
David R. Shaw
Affiliation:
Dep. Plant & Soil Sci., Miss. State Univ., Mississippi State, MS 39762
Thomas F. Hubbard Jr.
Affiliation:
Dep. Plant & Soil Sci., Miss. State Univ., Mississippi State, MS 39762

Abstract

The goal of this research was to determine if differing levels of tolerance to AC 263,222 exist in soybean. 14C-AC 263,222 was foliar-applied to ‘Coker 6955,’ ‘Hartz 6686,’ ‘Hutcheson,’ ‘9581 Pioneer,’ ‘9681 Pioneer,’ and ‘RA 606’ soybean cultivars. Differential absorption of 14C-AC 263,222 was evident among cultivars 48 and 96 h after application. Movement out of the treated leaf was both acropetal and basipetal, indicating xylem and phloem mobility. Although absorption and translocation differences occurred among cultivars, these differences do not explain the differential response of soybean cultivars to AC 263,222. Metabolism of 14C-AC 263,222 differed greatly among cultivars and increased with time. Ninety-six h after application, 9581 Pioneer metabolized 66% of the absorbed 14C-AC 263,222, compared to RA 606, which metabolized only 41%. The large differences in metabolism that occurred 48 and 96 h after application suggest that metabolism is responsible for the differential response of soybean cultivars to AC 263,222.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Anderson, P. C. and Hibberd, K. A. 1985. Evidence for the interaction of an imidazolinone herbicide with leucine, valine, and isoleucine metabolism. Weed Sci. 33:479483.Google Scholar
2. Barrentine, W. L., Edwards, C. J. Jr., and Hartwig, E. E. 1976. Screening soybeans for tolerance to metribuzin. Agron. J. 68:351353.Google Scholar
3. Cole, T. A., Wehtje, G. R., Wilcut, J. W., and Hicks, T. V. 1989. Behavior of imazethapyr in soybeans (Glycine max), peanuts (Arachis hypogaea), and selected weeds. Weed Sci. 37:639644.Google Scholar
4. Fehr, W. R., Caviness, C. E., Burmood, D. T., and Pennington, J. D. 1971. Stage of development descriptions for soybeans [Glycine max (L.) Merr.]. Crop Sci. 11:2526.CrossRefGoogle Scholar
5. Griffin, J. L., Reynolds, D. B., Vidrine, P. R., and Bruff, S. A. 1993. Soybean (Glycine max) tolerance and sicklepod (Cassia obtusifolia) control with AC 263,222. Weed Technol. 7:331336.Google Scholar
6. Hayes, R. M. and Wax, L. M. 1975. Differential interspecific response of soybean cultivars to bentazon. Weed Sci. 23:516521.Google Scholar
7. Kent, L. M., Barrentine, W. L., and Wills, G. D. 1988. Response of twenty determinate soybean (Glycine max) cultivars to imazaquin. Proc. South. Weed Sci. Soc. 41:50.Google Scholar
8. Lee, A., Gatterdam, P.E., Chiu, T. Y., Makkipudi, N. M., and Fiala, R.R. 1991. Plant metabolism. Pages 151166 in Shaner, D. L. and O'Conner, S. L., eds., The Imidazolinone Herbicides. CRC Press, Boston.Google Scholar
9. Little, D. L. and Shaner, D. L. 1991. Absorption and translocation of the imidazolinone herbicides. Pages 5369 in Shaner, D. L. and O'Conner, S. L., eds., The Imidazolinone Herbicides. CRC Press, Boston.Google Scholar
10. Martin, D. M., Worthington, J. P., and Gray, E. 1987. Soybean (Glycine max) cultivar response to fluchloralin, metribuzin, and vernolate. Weed Technol. 1:282285.CrossRefGoogle Scholar
11. Miller, D. K. and Griffin, J. L. 1993. Influence of irrigation on soybean response to postemergence application of Cadre. Proc. South. Weed Sci. Soc. 46:54.Google Scholar
12. Moberg, W. K. 1990. Herbicides inhibiting branched-chain amino acid biosynthesis. Pestic. Sci. 29:241246.Google Scholar
13. Newsom, L. J. and Shaw, D. R. 1992. Soybean (Glycine max) cultivar tolerance to chlorimuron and imazaquin with varying hydroponic solution pH. Weed Technol. 6:382388.CrossRefGoogle Scholar
14. Newsom, L. J. and Shaw, D. R. 1992. Soybean (Glycine max) response to chlorimuron and imazaquin as influenced by soil moisture. Weed Technol. 6:389395.Google Scholar
15. Newsom, L. J., Shaw, D. R., and Hydrick, D. E. 1992. Cultivar response of soybean to AC 263,222 as influenced by soil moisture. Proc. South. Weed Sci. Soc. 45:53.Google Scholar
16. Newsom, L. J., Shaw, D. R., and Webster, E. P. 1993. Soybean cultivar response to AC 263,222 and chlorimuron as influenced by soil moisture. Weed Sci. Soc. Am. Abst. 33:4.Google Scholar
17. Newsom, L. J., Shaw, D. R., and Baughman, T. A. 1993. Influence of cultivation and management strategies on weed control in soybean with Cadre. Proc. South. Weed Sci. Soc. 46:53.Google Scholar
18. Newsom, L. J., Shaw, D. R., and Hubbard, T. F. Jr. 1993. Absorption, translocation, and metabolism of AC 263,222 in peanut (Arachis hypogaea), soybean (Glycine max), and selected weeds. Weed Sci. 41:523527.CrossRefGoogle Scholar
19. Osborne, B. T. and Shaw, D. R. 1995. Response of selected soybean (Glycine max) cultivars to SAN 582H and metolachlor under hydroponic conditions. Weed Technol. 9:000000.Google Scholar
20. Osborne, B. T. and Shaw, D. R. 1995. Soybean (Glycine max) cultivar tolerance to SAN 582H and metolachlor as influenced by soil moisture. Weed Technol. 9:000000.Google Scholar
21. Pomeranke, G. J. and Nickell, C.D. 1988. Inheritance of chlorimuron ethyl sensitivity in the soybean strains BSR 101 and M74–462. Crop Sci. 28:5960.Google Scholar
22. Richburg, J. S. III, Wilcut, J. W., and Wiley, G. 1993. Cadrerates and applications in Georgia peanut. Proc. South. Weed Sci. Soc. 46:39.Google Scholar
23. Shaner, D. L. and Mallipudi, N. M. 1991. Mechanisms of selectivity of the imidazolinones. Pages 91102 in Shaner, D. L. and O'Conner, S. L., eds., The Imidazolinone Herbicides. CRC Press, Boston.Google Scholar
24. Shaner, D. L. and Robson, P. A. 1985. Absorption, translocation, and metabolism of AC 252 214 in soybean (Glycine max), common cocklebur (Xanthium strumarium), and velvetleaf (Abutilon theophrasti). Weed Sci. 33:469471.Google Scholar
25. Smith, R. J. Jr. and Caviness, C. E. 1973. Differential responses of soybean cultivars to propanil. Weed Sci. 21:279281.Google Scholar
26. Walls, F. R., Corbin, F. T., Collins, W. K., Worsham, A. D., and Bradley, J. R. Jr. 1993. Imazaquin absorption, translocation, and metabolism in flue-cured tobacco. Weed Technol. 7:370375.Google Scholar
27. Wax, L. M., Bernard, R. L., and Hayes, R. M. 1974. Response of soybean cultivars to bentazon, bromoxynil, chloroxuron, and 2,4-DB. Weed Sci. 22:3541.Google Scholar
28. Wilcut, W. W., Wehtje, G. R., Patterson, M. G., and Cole, T. A. 1988. Absorption, translocation, and metabolism of foliar-applied imazaquin in soybeans (Glycine max), peanuts (Arachis hypogaea), and associated weeds. Weed Sci. 36:58.Google Scholar
29. Wixson, M. B. and Shaw, D. R. 1991. Differential soybean (Glycine max) cultivar tolerance to AC 263,222. Weed Technol. 5:430433.Google Scholar
30. Wixson, M. B. and Shaw, D. R. 1992. Effect of adjuvants on weed control and soybean (Glycine max) tolerance with AC 263,222. Weed Technol. 5:817822.Google Scholar