Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:50:24.208Z Has data issue: false hasContentIssue false

A Decade of Glyphosate-Resistant Lolium around the World: Mechanisms, Genes, Fitness, and Agronomic Management

Published online by Cambridge University Press:  20 January 2017

Christopher Preston*
Affiliation:
School of Agriculture, Food & Wine, University of Adelaide, PMB 1, Glen Osmond SA 5064, Australia
Angela M. Wakelin
Affiliation:
School of Agriculture, Food & Wine, University of Adelaide, PMB 1, Glen Osmond SA 5064, Australia
Fleur C. Dolman
Affiliation:
School of Agriculture, Food & Wine, University of Adelaide, PMB 1, Glen Osmond SA 5064, Australia
Yazid Bostamam
Affiliation:
School of Agriculture, Food & Wine, University of Adelaide, PMB 1, Glen Osmond SA 5064, Australia
Peter Boutsalis
Affiliation:
School of Agriculture, Food & Wine, University of Adelaide, PMB 1, Glen Osmond SA 5064, Australia
*
Corresponding author's E-mail: christopher.preston@adelaide.edu.au

Abstract

Glyphosate resistance was first discovered in populations of rigid ryegrass in Australia in 1996. Since then, glyphosate resistance has been detected in additional populations of rigid ryegrass and Italian ryegrass in several other countries. Glyphosate-resistant rigid ryegrass and Italian ryegrass have been selected in situations where there is an overreliance on glyphosate to the exclusion of other weed control tactics. Two major mechanisms of glyphosate resistance have been discovered in these two species: a change in the pattern of glyphosate translocation such that glyphosate accumulates in the leaf tips of resistant plants instead of in the shoot meristem; and amino acid substitutions at Pro 106 within the target site, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). There are also populations with both mechanisms. In the case of glyphosate resistance, the target site mutations tend to provide a lower level of resistance than does the altered translocation mechanism. Each of these resistance mechanisms is inherited as a single gene trait that is largely dominant. As these ryegrass species are obligate outcrossers, this ensures resistance alleles can move in both pollen and seed. Some glyphosate-resistant rigid ryegrass populations appear to have a significant fitness penalty associated with the resistance allele. Field surveys show that strategies vary in their ability to reduce the frequency of glyphosate resistance in populations and weed population size, with integrated strategies—including alternative weed management and controlling seed set of surviving plants—the most effective.

Type
Special Topics
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baerson, S. R., Rodriguez, D. J., Biest, N. A., Tran, M., You, J., Kreuger, R. W., Pratley, J. E., and Gruys, K. J. 2002b. Investigating the mechanism of glyphosate resistance in rigid ryegrass. Weed Sci. 50:721730.Google Scholar
Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Biest, N. A., and Dill, G. M. 2002a. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129:12651275.CrossRefGoogle ScholarPubMed
Basu, C., Halfhill, M. D., Mueller, T. C., and Stewart, C. N. Jr. 2004. Weed genomics: new tools to understand weed biology. Trends Plant Sci. 9:391398.Google Scholar
Baylis, A. D. 2000. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manage. Sci. 56:299308.Google Scholar
Bradshaw, L. D., Padgette, S. R., Kimball, S. L., and Wells, B. H. 1997. Perspectives on glyphosate resistance. Weed Technol. 11:189198.Google Scholar
Burnet, M. W. M., Christopher, J. T., Holtum, J. A. M., and Powles, S. B. 1994b. Identification of two mechanisms of sulfonylurea resistance within one population of rigid ryegrass (Lolium rigidum) using a selective germination medium. Weed Sci. 42:468473.Google Scholar
Burnet, M. W. M., Hart, Q., Holtum, J. A. M., and Powles, S. B. 1994a. Resistance to nine herbicide classes in a population of rigid ryegrass (Lolium rigidum). Weed Sci. 42:369377.Google Scholar
Cairns, A. L. P. and Ecksteen, F. H. 2001. Glyphosate resistance in Lolium rigidum Gaud. in South Africa. Pages 14. in. Proceedings of Resistance 2001. Herts, UK IACR-Rothamsted.Google Scholar
Charmet, G., Balfourier, F., and Chatard, V. 1996. Taxonomic relationships and interspecific hybridization in the genus Lolium (grasses). Genet. Resour. Crop Evol. 43:319327.Google Scholar
Christoffoleti, P. J., Trentin, R., Tocchetto, S., Marochi, A., Batista Galli, A. J., López-Ovejero, R. F., and Nicolai, M. 2005. Alternative herbicides to manage Italian ryegrass (Lolium multiflorum Lam) resistant to glyphosate at different phenological stages. J. Environ. Sci. Health, Pt. B, Pestic., Food Contam., Agric. Wastes. 40:5967.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manage. Sci. 64:319325.Google Scholar
Feng, P. C. C., Tran, M., Chiu, T., Sammons, R. D., Heck, G. R., and CaJacob, C. A. 2004. Investigations into glyphosate-resistant horseweed (Conyza canadensis): retention, uptake, translocation, and metabolism. Weed Sci. 52:498505.Google Scholar
Gill, G. S., Cousens, R. D., and Allan, M. R. 1996. Germination, growth, and development of herbicide resistant and susceptible populations of rigid ryegrass (Lolium rigidum). Weed Sci. 44:252256.CrossRefGoogle Scholar
Healy-Fried, M. L., Funke, T., Priestman, M. A., Han, H., and Schönbrunn, E. 2007. Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase. J. Biol. Chem. 282:32,94932,955.Google Scholar
Heap, I. 2008. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: December 8, 2008.Google Scholar
Jasieniuk, M., Ahmad, R., Sherwood, A. M., Firestone, J. L., Perez-Jones, A., Lanini, W. T., Mallory-Smith, C. A., and Stednick, Z. 2008. Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: distribution, response to glyphosate and molecular evidence for an altered target enzyme. Weed Sci. 54:496502.Google Scholar
Jasieniuk, M., Brûlé-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., Hollinshead, P. H., Warner, S. A. J., and Preston, C. 2002. Investigations into the mechanism of glyphosate resistance in Lolium rigidum. Pestic. Biochem. Physiol. 74:6272.Google Scholar
Lorraine-Colwill, D. F., Powles, S. B., Hawkes, T. R., and Preston, C. 2001. Inheritance of evolved glyphosate resistance in Lolium rigidum (Gaud.). Theor. Appl. Genet. 102:545550.CrossRefGoogle Scholar
Michitte, P., De Prado, R., Espinoza, N., Ruiz-Santaella, J. P., and Gauvrit, C. 2007. Mechanisms of resistance to glyphosate in a ryegrass (Lolium multiflorum) biotype from Chile. Weed Sci. 55:435440.Google Scholar
Nandula, V. K., Poston, D. H., Eubank, T. W., Koger, C. H., and Reddy, K. N. 2007. Differential response to glyphosate in Italian ryegrass (Lolium multiflorum) populations from Mississippi. Weed Technol. 21:477482.Google Scholar
Nandula, V. K., Reddy, K. N., Poston, D. H., Rimando, A. M., and Duke, S. O. 2008. Glyphosate tolerance mechanism in Italian ryegrass (Lolium multiflorum) from Mississippi. Weed Sci. 56:344349.Google Scholar
Neve, P., Sadler, J., and Powles, S. B. 2004. Multiple herbicide resistance in a glyphosate-resistant rigid ryegrass (Lolium rigidum) population. Weed Sci. 52:920928.CrossRefGoogle Scholar
Pedersen, M. B., Neve, P., Andreasen, C., and Powles, S. B. 2007. Ecological fitness of a glyphosate-resistant Lolium rigidum population: growth and seed production along a competition gradient. Basic Appl. Ecol. 8:258268.Google Scholar
Perez-Jones, A., Park, K-W., Polge, N., Colquhoun, J., and Mallory-Smith, C. A. 2007. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta. 226:395404.CrossRefGoogle ScholarPubMed
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.CrossRefGoogle Scholar
Powles, S. B. and Preston, C. 2006. Evolved glyphosate resistance in plants: Biochemical and genetic basis of resistance. Weed Technol. 20:282289.Google Scholar
Powles, S. B., Preston, C., Bryan, I. B., and Jutsum, A. R. 1997. Herbicide resistance: impact and management. Adv. Agron. 58:5793.Google Scholar
Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Cullis, K., Schafer, D., Bohn, J., and Krueger, R. 1999. Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Sci. 47:405411.Google Scholar
Preston, C. 2008. Australian Glyphosate Resistance Register. National Glyphosate Sustainability Working Group. http://www.weedscrc.org.au/glyphosate. Accessed: December 8, 2008.Google Scholar
Preston, C. and Powles, S. B. 2002. Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum. Heredity. 88:813.Google Scholar
Preston, C., Tardif, F. J., Christopher, J. T., and Powles, S. B. 1996. Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicide degrading enzymes. Pestic. Biochem. Physiol. 54:123134.Google Scholar
Preston, C. and Wakelin, A. M. 2008. Resistance to glyphosate from altered herbicide translocation patterns. Pest Manage. Sci. 64:372376.Google Scholar
Simarmata, M., Bughrara, S., and Penner, D. 2005. Inheritance of glyphosate resistance in rigid ryegrass (Lolium rigidum) from California. Weed Sci. 53:615619.Google Scholar
Simarmata, M., Kaufmann, J. E., and Penner, D. 2003. Potential basis of glyphosate resistance in California rigid ryegrass (Lolium rigidum). Weed Sci. 51:678682.Google Scholar
Simarmata, M. and Penner, D. 2008. The basis for glyphosate resistance in rigid ryegrass (Lolium rigidum) from California. Weed Sci. 56:181188.Google Scholar
Steinrücken, H. C. and Amrhein, N. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94:1207–12.Google Scholar
Terrell, E. E. 1966. Taxonomic implications of genetics in ryegrasses (Lolium). Bot. Rev. 32:138164.Google Scholar
Terrell, E. E. 1968. A taxonomic revision of the genus Lolium. Technical Bulletin 1392, US Department of Agriculture. 165.Google Scholar
Wakelin, A. M. and Preston, C. 2006a. Inheritance of glyphosate resistance in several populations of rigid ryegrass (Lolium rigidum) from Australia. Weed Sci. 54:212219.Google Scholar
Wakelin, A. M. and Preston, C. 2006b. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res. 46:432440.Google Scholar
Wakelin, A. M. and Preston, C. 2006c. The cost of glyphosate resistance: is there a fitness penalty associated with glyphosate resistance in annual ryegrass? 515518. In Preston, C., Watts, J. H., and Crossman, N. D. Proceedings of the 15th Australian Weeds Conference. Adelaide, Australia Weed Management Society of South Australia, Inc.Google Scholar
Wakelin, A. M. and Preston, C. 2008. Impact of management on glyphosate-resistant Lolium rigidum populations on farm. Pages 8082. In van Klinken, R. D., Osten, V. A., Panetta, F. D., and Scanlon, J. C. Proceedings of the 16th Australian Weeds Conference. Brisbane, Australia Queensland Weeds Society.Google Scholar
Wakelin, A. M., Lorraine-Colwill, D. F., and Preston, C. 2004. Glyphosate resistance in four different populations of Lolium rigidum is associated with reduced translocation of glyphosate to meristematic zones. Weed Res. 44:453459.Google Scholar
Yu, Q., Cairns, A., and Powles, S. B. 2007. Glyphosate, paraquat and ACCase multiple resistance evolved in a Lolium rigidum biotype. Planta. 225:499513.Google Scholar